Recent advances in fluorescence sensor for the detection of peroxide explosives
- Corresponding author: Qing-Guo He, hqg@mail.sim.ac.cn Jian-Gong Cheng, jgcheng@mail.sim.ac.cn
Citation: Yu Zhang, Yan-Yan Fu, De-Feng Zhu, Jia-Qiang Xu, Qing-Guo He, Jian-Gong Cheng. Recent advances in fluorescence sensor for the detection of peroxide explosives[J]. Chinese Chemical Letters, ;2016, 27(8): 1429-1436. doi: 10.1016/j.cclet.2016.05.019
G. McDonnell, A.D. Russell. Antiseptics and disinfectants: activity, action, and resistance, Clin[J]. Microbiol. Rev., 1999,12:147-179.
S. Tan, Y. Sagara, Y.B. Liu, P. Maher, D. Schubert. The regulation of reactive oxygen species production during programmed cell death[J]. J. Cell Biol., 1998,141:1423-1432. doi: 10.1083/jcb.141.6.1423
J. Roach, P. Ekblom, R. Flynn. The conjunction of terrorist opportunity: a framework for diagnosing and preventing acts of terrorism[J]. Sec. J., 2005,18:7-25.
R. Schulte-Ladbeck, M. Vogel, U. Karst. Recent methods for the determination of peroxide-based explosives[J]. Anal. Bioanal. Chem., 2006,386:559-565. doi: 10.1007/s00216-006-0579-y
K.F. Ferris, R.J. Bartlett. Hydrogen pentazole: does it exist?[J]. J. Am. Chem. Soc., 1992,114:8302-8303. doi: 10.1021/ja00047a058
Richard Reid's shoe bombing on American Airlines Flight 63 on December 22, 2001. http://en.wikipedia.org/wiki/Richard_Reid.
The London bombings on July 7, 2005. http://en.wikipedia.org/wiki/7_July_2005_London_bombings.
The explosions at the airport and the metro station in Brussels on Tuesday 2th March 2016. http://www.baidu.com/s?ie=utf8&oe=utf8&wd=theexplosionsattheairportandthemetrostationinBrusselsonTuesday2thMarch2016&tn=98010089_dg&ch=3.
J. Wang. Electrochemical sensing of explosives[J]. Electroanalysis, 2007,19:415-423. doi: 10.1002/(ISSN)1521-4109
F. Dubnikova, R. Kosloff, J. Almog. Decomposition of triacetone triperoxide is an entropic explosion[J]. J. Am. Chem. Soc., 2005,127:1146-1159. doi: 10.1021/ja0464903
J.C. Sanchez, W.C. Trogler. Efficient blue-emitting silafluorene-fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives[J]. J. Mater. Chem., 2008,18:3143-3156. doi: 10.1039/b802623h
R. Schulte-Ladbeck, P. Kolla, U. Karst. Trace analysis of peroxide-based explosives[J]. Anal. Chem., 2003,75:731-735. doi: 10.1021/ac020392n
F.I. Bohrer, C.N. Colesniuc, J. Park. Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors[J]. J. Am. Chem. Soc., 2008,130:3712-3713. doi: 10.1021/ja710324f
W.Z. Jia, M. Guo, Z. Zheng. Vertically aligned CuO nanowires based electrode for amperometric detection ofhydrogen peroxide[J]. Electroanalysis, 2008,20:2153-2157. doi: 10.1002/elan.v20:19
S.H. Chen, R. Yuan, Y.Q. Chai, F.X. Hu. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review[J]. Microchim. Acta, 2012,180:15-32.
S.K. Mamo, J. Gonzalez-Rodriguez. Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (TATP)[J]. Sensors, 2014,14:23269-23282. doi: 10.3390/s141223269
A.M. Smolin, N.P. Novoselov, T.A. Babkova, S.N. Eliseeva, V.V. Kondrat'ev. Use of composite films based on poly(3, 4-ethylenedioxythiophene) with inclusions of palladium nanoparticles in voltammetric sensors for hydrogen peroxide[J]. J. Anal. Chem., 2015,70:967-973. doi: 10.1134/S1061934815080171
Y.Q. Xie, I.F. Cheng. Selective and rapid detection of triacetone triperoxide by double-step chronoamperometry[J]. Microchem. J., 2010,94:166-170. doi: 10.1016/j.microc.2009.10.016
A. Shaw, P. Lindhome, R.L. Calhoun. Electrogenerated chemiluminescence (ECL) quenching of Ru(bpy)32+ by the explosives TATP and Tetryl[J]. J. Electrochem. Soc., 2013,160:H782-H786. doi: 10.1149/2.005311jes
S. Parajuli, W.J. Miao. Sensitive determination of triacetone triperoxide explosives using electrogenerated chemiluminescence[J]. Anal. Chem., 2013,85:8008-8015. doi: 10.1021/ac401962b
Y. Sang, L. Zhang, Y.F. Li. A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles[J]. Anal. Chim. Acta, 2010,659:224-228. doi: 10.1016/j.aca.2009.11.031
Ş. Eren, A. Üzer, Z.Y. Can. Determination of peroxide-based explosives with copper(II)-neocuproine assay combined with a molecular spectroscopic sensor[J]. Analyst, 2010,135:2085-2091. doi: 10.1039/b925653a
M. Amani, Y. Chu, K.L. Waterman. Detection of triacetone triperoxide (TATP) using a thermodynamic based gas sensor[J]. Sensor. Actuat. B Chem., 2012,162:7-13. doi: 10.1016/j.snb.2011.11.019
S.H. Wu, I.J. Wen, C.C. Chiang. Effects of various fire-extinguishing reagents for thermal hazard of triacetone triperoxide (TATP) by DSC/TG[J]. J. Therm. Anal. Calorim., 2013,113:991-995. doi: 10.1007/s10973-012-2788-2
S.M. Steinberg. High-performance liquid chromatography method for determination of hydrogen peroxide in aqueous solution and application to simulated Martian soil and related materials[J]. Environ. Monit. Assess, 2013,185:3749-3757. doi: 10.1007/s10661-012-2825-4
M. Tarvin, B. McCord, K. Mount, K. Sherlach, M.L. Miller. Optimization of two methods for the analysis of hydrogen peroxide: high performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode[J]. J. Chromatogr. A, 2010,1217:7564-7572. doi: 10.1016/j.chroma.2010.10.022
M.E. Sigman, C.D. Clark, R. Fidler, C.L. Geiger, C.A. Clausen. Analysis of triacetone triperoxide by gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry by electron and chemical ionization[J]. Rapid Commun. Mass Spectrom., 2006,20:2851-2857. doi: 10.1002/(ISSN)1097-0231
R.M. Räsänen, M. Nousiainen, K. Peräkorpi. Determination of gas phase triacetone triperoxide with aspiration ion mobility spectrometry and gas chromatography-mass spectrometry[J]. Anal. Chim. Acta, 2008,623:59-65. doi: 10.1016/j.aca.2008.05.076
A. Kende, F. Lebics, Z. Eke, K. Torkos. Trace level triacetone-triperoxide identification with SPME-GC-MS in model systems[J]. Microchim. Acta, 2008,163:335-338. doi: 10.1007/s00604-008-0001-x
R.M. Burks, D.S. Hage. Current trends in the detection of peroxide-based explosives[J]. Anal. Bioanal. Chem., 2009,395:301-313. doi: 10.1007/s00216-009-2968-5
X.C. Sun, Y. Wang, Y. Lei. Fluorescence based explosive detection: from mechanisms to sensory materials[J]. Chem. Soc. Rev., 2015,44:8019-8061. doi: 10.1039/C5CS00496A
M.E. Germain, M.J. Knapp. Optical explosives detection: from color changes to fluorescence turn-on[J]. Chem. Soc. Rev., 2009,38:2543-2555. doi: 10.1039/b809631g
H. Östmark, S. Wallin, H.G. Ang. Vapor pressure of explosives: a critical review[J]. Propell. Explos. Pyrotech., 2012,37:12-23. doi: 10.1002/prep.v37.1
A.R. Lippert, G.C. van de Bittner, C.J. Chang. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems[J]. Acc. Chem. Res., 2011,44:793-804. doi: 10.1021/ar200126t
W.P. Jencks, J. Carriuolo. Reactivity of nucleophilic reagents toward esters[J]. J. Am. Chem. Soc., 1960,82:1778-1786. doi: 10.1021/ja01492a058
Y. Ren, H. Yamataka. The a-effect in gas-phase SN2 reactions: existence and the origin of the effect[J]. J. Org. Chem., 2007,72:5660-5667. doi: 10.1021/jo070650m
W. Xu, Y.Y. Fu, Y.X. Gao. A simple but highly efficient multi-formyl phenolamine system for fluorescence detection of peroxide explosive vapour[J]. Chem. Commun., 2015,51:10868-10870. doi: 10.1039/C5CC03406J
S. Malashikhin, N.S. Finney. Fluorescent signaling based on sulfoxide profluorophores: application to the visual detection of the explosive TATP[J]. J. Am. Chem. Soc., 2008,130:12846-12847. doi: 10.1021/ja802989v
R. Schulte-Ladbeck, P. Kolla, U. Karst. A field test for the detection of peroxidebased explosives[J]. Analyst, 2002,127:1152-1154. doi: 10.1039/b206673b
Y.Y. Qian, L. Xue, D.X. Hu, G.P. Li, H. Jiang. Quinoline-based fluorescent probe for ratiometric detection of hydrogen peroxide in aqueous solution[J]. Dyes Pigments, 2012,95:373-376. doi: 10.1016/j.dyepig.2012.05.013
J. Xu, Q. Li, Y. Yue, Y. Guo, S.J. Shao. A water-soluble BODIPY derivative as a highly selective "Turn-On" fluorescent sensor for H2O2 sensing in vivo[J]. Biosens. Bioelectron., 2014,56:58-63. doi: 10.1016/j.bios.2013.12.065
Y.M. Shen, B. Kong, X.F. Peng. A new turn-off fluorescence chemosensor for hydrogen peroxide based on carbazole derivative in aqueous solution[J]. Adv. Mater. Res., 2014,1006-1007:821-825. doi: 10.4028/www.scientific.net/AMR.1006-1007
M. Kumar, N. Kumar, V. Bhalla, P.R. Sharma, Y. Qurishi. A charge transfer assisted fluorescent probe for selective detection of hydrogen peroxide among different reactive oxygen species[J]. Chem. Commun., 2012,48:4719-4721. doi: 10.1039/c2cc30932g
B.C. Dickinson, C. Huynh, C.J. Chang. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells[J]. J. Am. Chem. Soc., 2010,132:5906-5915. doi: 10.1021/ja1014103
D. Srikun, A.E. Albers, C.I. Nam, A.T. Iavarone, C.J. Chang. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling[J]. J. Am. Chem. Soc., 2010,132:4455-4465. doi: 10.1021/ja100117u
M.E. Germain, M.J. Knapp. Turn-on fluorescence detection of H2O2 and TATP[J]. Inorg. Chem., 2008,47:9748-9750. doi: 10.1021/ic801317x
Y.Y. Fu, Q.G. He, D.F. Zhu. A BODIPY dye as a reactive chromophoric/ fluorogenic probe for selective and quick detection of vapors of secondary amines[J]. Chem. Commun., 2013,49:11266-11268. doi: 10.1039/c3cc46571c
A. Matsumoto, R. Nishiyabu, Y. Kubo. Synthesis of a borylated boron-dibenzopyrromethene dye enabling the visual detection of H2O2 vapor[J]. RSC Adv., 2014,4:37973-37978. doi: 10.1039/C4RA06061J
J.Y. Zheng, Y.L. Yan, X.P. Wang. Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides[J]. Adv. Mater., 2012,24:OP194-OP199.
W.H. Zhang, W.D. Zhang, L.Y. Chen. Highly sensitive detection of explosive triacetone triperoxide by an In2O3 sensor[J]. Nanotechnology, 2010,21315502. doi: 10.1088/0957-4484/21/31/315502
M. Xu, B.R. Bunes, L. Zang. Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface[J]. ACS Appl. Mater. Interfaces, 2011,3:642-647. doi: 10.1021/am1012535
M. Xu, J.M. Han, Y.Q. Zhang, X.M. Yang, L. Zang. A selective fluorescence turn-on sensor for trace vapor detection of hydrogen peroxide[J]. Chem. Commun., 2013,49:11779-11781. doi: 10.1039/c3cc47631f
M. Xu, J.M. Han, C. Wang. Fluorescence ratiometric sensor for trace vapor detection of hydrogen peroxide[J]. ACS Appl. Mater. Interfaces, 2014,6:8708-8714. doi: 10.1021/am501502v
S. Rochat, T.M. Swager. Conjugated amplifying polymers for optical sensing applications[J]. ACS Appl. Mater. Interfaces, 2013,5:4488-4502. doi: 10.1021/am400939w
J.C. Sanchez, W.C. Trogler. Polymerization of a boronate-functionalized fluorophore by double transesterification: applications to fluorescence detection of hydrogen peroxide vapor[J]. J. Mater. Chem., 2008,18:5134-5141. doi: 10.1039/b809674k
L., Y.X., Y.Y., etal.. Borate ester endcappedfluorescent hyperbranched conjugated polymer for trace peroxide explosive vapor detection[J]. RSC Adv., 2015,5:29624-29630. doi: 10.1039/C5RA02472B
D. Armitt, P. Zimmermann, S. Ellis-Steinborner. Gas chromatography/mass spectrometry analysis of triacetone triperoxide (TATP) degradation products[J]. Rapid Commun. Mass Spectrom., 2008,22:950-958. doi: 10.1002/(ISSN)1097-0231
H.W. Lin, K.S. Suslick. A colorimetric sensor array for detection of triacetone triperoxide vapor[J]. J. Am. Chem. Soc., 2010,132:15519-15521. doi: 10.1021/ja107419t
C. He, D.F. Zhu, Q.G. He. A highly efficient fluorescent sensor of explosive peroxide vapor via ZnO nanorod array catalyzed deboronation of pyrenyl borate[J]. Chem. Commun., 2012,48:5739-5741. doi: 10.1039/c2cc31386c
M.H. Lan, Y.F. Di, X.Y. Zhu. A carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism[J]. Chem. Commun., 2015,51:15574-15577. doi: 10.1039/C5CC05835J
Z.Y. Can, A. Üzer, K. Türkekul, E. Erçağ, R. Apak. Determination of triacetone triperoxide with a N,N-dimethyl-p-phenylenediamine sensor on nafion using Fe3O4 magnetic nanoparticles[J]. Anal. Chem., 2015,87:9589-9594. doi: 10.1021/acs.analchem.5b01775
E. Capua, R. Cao, C.N. Sukenik, R. Naaman. Detection of triacetone triperoxide (TATP) with an array of sensors based on non-specific interactions[J]. Sensor. Actuat. B Chem., 2009,140:122-127. doi: 10.1016/j.snb.2009.04.045
K.Y. Hua, C.M. Deng, C. He. Organic semiconductors-coated polyacrylonitrile (PAN) electrospun nanofibrous mats for highly sensitive chemosensors via evanescent-wave guiding effect[J]. Chin. Chem. Lett., 2013,24:643-646. doi: 10.1016/j.cclet.2013.04.033
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195
Ying Xu , Chengying Shen , Hailong Yuan , Wei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324
Xiangshuai Li , Jian Zhao , Li Luo , Zhuohao Jiao , Ying Shi , Shengli Hou , Bin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407
Deshuai Zhen , Chunlin Liu , Qiuhui Deng , Shaoqi Zhang , Ningman Yuan , Le Li , Yu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249
Manman Ou , Yunjian Zhu , Jiahao Liu , Zhaoxuan Liu , Jianjun Wang , Jun Sun , Chuanxiang Qin , Lixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
Haiying Wei , Daqing Yang , Mingtao Run , Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068
YanYuan Jia , Rong Rong , Jie Liu , Jing Guo , GuoYu Jiang , Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035
Qin Li , Kexin Yang , Qinglin Yang , Xiangjin Zhu , Xiaole Han , Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042
Shiyu Pan , Bo Cao , Deling Yuan , Tifeng Jiao , Qingrui Zhang , Shoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
Xueling Yu , Lixing Fu , Tong Wang , Zhixin Liu , Na Niu , Ligang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238