Citation: Yu Zhang, Yan-Yan Fu, De-Feng Zhu, Jia-Qiang Xu, Qing-Guo He, Jian-Gong Cheng. Recent advances in fluorescence sensor for the detection of peroxide explosives[J]. Chinese Chemical Letters, ;2016, 27(8): 1429-1436. doi: 10.1016/j.cclet.2016.05.019 shu

Recent advances in fluorescence sensor for the detection of peroxide explosives

  • Corresponding author: Qing-Guo He, hqg@mail.sim.ac.cn Jian-Gong Cheng, jgcheng@mail.sim.ac.cn
  • Received Date: 30 March 2016
    Revised Date: 6 May 2016
    Accepted Date: 20 May 2016
    Available Online: 27 August 2016

Figures(13)

  • The detection of peroxide explosives (PEs) has attracted considerable attention all over the world in global security owing to their simple preparation, poor chemical stability and easy decomposition. In recent years, great efforts have been devoted to developing organic fluorescence sensors for detecting the PEs because of their fast response, high sensitivity and high selectivity. In this short review, we firstly discuss the sensing mechanisms for fluorescence based the PEs detection. Next, we reviewed recent progress of PE probes in the nearly 5 years and the design strategies of the material structures to enhance the sensitivity or selectivity, such as conjugated polymers and assembled nanoparticles.
  • 加载中
    1. [1]

      G. McDonnell, A.D. Russell. Antiseptics and disinfectants: activity, action, and resistance, Clin[J]. Microbiol. Rev., 1999,12:147-179.  

    2. [2]

      S. Tan, Y. Sagara, Y.B. Liu, P. Maher, D. Schubert. The regulation of reactive oxygen species production during programmed cell death[J]. J. Cell Biol., 1998,141:1423-1432. doi: 10.1083/jcb.141.6.1423

    3. [3]

      J. Roach, P. Ekblom, R. Flynn. The conjunction of terrorist opportunity: a framework for diagnosing and preventing acts of terrorism[J]. Sec. J., 2005,18:7-25.  

    4. [4]

      R. Schulte-Ladbeck, M. Vogel, U. Karst. Recent methods for the determination of peroxide-based explosives[J]. Anal. Bioanal. Chem., 2006,386:559-565. doi: 10.1007/s00216-006-0579-y

    5. [5]

      K.F. Ferris, R.J. Bartlett. Hydrogen pentazole: does it exist?[J]. J. Am. Chem. Soc., 1992,114:8302-8303. doi: 10.1021/ja00047a058

    6. [6]

      Richard Reid's shoe bombing on American Airlines Flight 63 on December 22, 2001. http://en.wikipedia.org/wiki/Richard_Reid.

    7. [7]

      The London bombings on July 7, 2005. http://en.wikipedia.org/wiki/7_July_2005_London_bombings.

    8. [8]

      The explosions at the airport and the metro station in Brussels on Tuesday 2th March 2016. http://www.baidu.com/s?ie=utf8&oe=utf8&wd=theexplosionsattheairportandthemetrostationinBrusselsonTuesday2thMarch2016&tn=98010089_dg&ch=3.

    9. [9]

      J. Wang. Electrochemical sensing of explosives[J]. Electroanalysis, 2007,19:415-423. doi: 10.1002/(ISSN)1521-4109

    10. [10]

      F. Dubnikova, R. Kosloff, J. Almog. Decomposition of triacetone triperoxide is an entropic explosion[J]. J. Am. Chem. Soc., 2005,127:1146-1159. doi: 10.1021/ja0464903

    11. [11]

      J.C. Sanchez, W.C. Trogler. Efficient blue-emitting silafluorene-fluorene-conjugated copolymers: selective turn-off/turn-on detection of explosives[J]. J. Mater. Chem., 2008,18:3143-3156. doi: 10.1039/b802623h

    12. [12]

      R. Schulte-Ladbeck, P. Kolla, U. Karst. Trace analysis of peroxide-based explosives[J]. Anal. Chem., 2003,75:731-735. doi: 10.1021/ac020392n

    13. [13]

      F.I. Bohrer, C.N. Colesniuc, J. Park. Selective detection of vapor phase hydrogen peroxide with phthalocyanine chemiresistors[J]. J. Am. Chem. Soc., 2008,130:3712-3713. doi: 10.1021/ja710324f

    14. [14]

      W.Z. Jia, M. Guo, Z. Zheng. Vertically aligned CuO nanowires based electrode for amperometric detection ofhydrogen peroxide[J]. Electroanalysis, 2008,20:2153-2157. doi: 10.1002/elan.v20:19

    15. [15]

      S.H. Chen, R. Yuan, Y.Q. Chai, F.X. Hu. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review[J]. Microchim. Acta, 2012,180:15-32.  

    16. [16]

      S.K. Mamo, J. Gonzalez-Rodriguez. Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (TATP)[J]. Sensors, 2014,14:23269-23282. doi: 10.3390/s141223269

    17. [17]

      A.M. Smolin, N.P. Novoselov, T.A. Babkova, S.N. Eliseeva, V.V. Kondrat'ev. Use of composite films based on poly(3, 4-ethylenedioxythiophene) with inclusions of palladium nanoparticles in voltammetric sensors for hydrogen peroxide[J]. J. Anal. Chem., 2015,70:967-973. doi: 10.1134/S1061934815080171

    18. [18]

      Y.Q. Xie, I.F. Cheng. Selective and rapid detection of triacetone triperoxide by double-step chronoamperometry[J]. Microchem. J., 2010,94:166-170. doi: 10.1016/j.microc.2009.10.016

    19. [19]

      A. Shaw, P. Lindhome, R.L. Calhoun. Electrogenerated chemiluminescence (ECL) quenching of Ru(bpy)32+ by the explosives TATP and Tetryl[J]. J. Electrochem. Soc., 2013,160:H782-H786. doi: 10.1149/2.005311jes

    20. [20]

      S. Parajuli, W.J. Miao. Sensitive determination of triacetone triperoxide explosives using electrogenerated chemiluminescence[J]. Anal. Chem., 2013,85:8008-8015. doi: 10.1021/ac401962b

    21. [21]

      Y. Sang, L. Zhang, Y.F. Li. A visual detection of hydrogen peroxide on the basis of Fenton reaction with gold nanoparticles[J]. Anal. Chim. Acta, 2010,659:224-228. doi: 10.1016/j.aca.2009.11.031

    22. [22]

      Ş. Eren, A. Üzer, Z.Y. Can. Determination of peroxide-based explosives with copper(II)-neocuproine assay combined with a molecular spectroscopic sensor[J]. Analyst, 2010,135:2085-2091. doi: 10.1039/b925653a

    23. [23]

      M. Amani, Y. Chu, K.L. Waterman. Detection of triacetone triperoxide (TATP) using a thermodynamic based gas sensor[J]. Sensor. Actuat. B Chem., 2012,162:7-13. doi: 10.1016/j.snb.2011.11.019

    24. [24]

      S.H. Wu, I.J. Wen, C.C. Chiang. Effects of various fire-extinguishing reagents for thermal hazard of triacetone triperoxide (TATP) by DSC/TG[J]. J. Therm. Anal. Calorim., 2013,113:991-995. doi: 10.1007/s10973-012-2788-2

    25. [25]

      S.M. Steinberg. High-performance liquid chromatography method for determination of hydrogen peroxide in aqueous solution and application to simulated Martian soil and related materials[J]. Environ. Monit. Assess, 2013,185:3749-3757. doi: 10.1007/s10661-012-2825-4

    26. [26]

      M. Tarvin, B. McCord, K. Mount, K. Sherlach, M.L. Miller. Optimization of two methods for the analysis of hydrogen peroxide: high performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode[J]. J. Chromatogr. A, 2010,1217:7564-7572. doi: 10.1016/j.chroma.2010.10.022

    27. [27]

      M.E. Sigman, C.D. Clark, R. Fidler, C.L. Geiger, C.A. Clausen. Analysis of triacetone triperoxide by gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry by electron and chemical ionization[J]. Rapid Commun. Mass Spectrom., 2006,20:2851-2857. doi: 10.1002/(ISSN)1097-0231

    28. [28]

      R.M. Räsänen, M. Nousiainen, K. Peräkorpi. Determination of gas phase triacetone triperoxide with aspiration ion mobility spectrometry and gas chromatography-mass spectrometry[J]. Anal. Chim. Acta, 2008,623:59-65. doi: 10.1016/j.aca.2008.05.076

    29. [29]

      A. Kende, F. Lebics, Z. Eke, K. Torkos. Trace level triacetone-triperoxide identification with SPME-GC-MS in model systems[J]. Microchim. Acta, 2008,163:335-338. doi: 10.1007/s00604-008-0001-x

    30. [30]

      R.M. Burks, D.S. Hage. Current trends in the detection of peroxide-based explosives[J]. Anal. Bioanal. Chem., 2009,395:301-313. doi: 10.1007/s00216-009-2968-5

    31. [31]

      X.C. Sun, Y. Wang, Y. Lei. Fluorescence based explosive detection: from mechanisms to sensory materials[J]. Chem. Soc. Rev., 2015,44:8019-8061. doi: 10.1039/C5CS00496A

    32. [32]

      M.E. Germain, M.J. Knapp. Optical explosives detection: from color changes to fluorescence turn-on[J]. Chem. Soc. Rev., 2009,38:2543-2555. doi: 10.1039/b809631g

    33. [33]

      H. Östmark, S. Wallin, H.G. Ang. Vapor pressure of explosives: a critical review[J]. Propell. Explos. Pyrotech., 2012,37:12-23. doi: 10.1002/prep.v37.1

    34. [34]

      A.R. Lippert, G.C. van de Bittner, C.J. Chang. Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems[J]. Acc. Chem. Res., 2011,44:793-804. doi: 10.1021/ar200126t

    35. [35]

      W.P. Jencks, J. Carriuolo. Reactivity of nucleophilic reagents toward esters[J]. J. Am. Chem. Soc., 1960,82:1778-1786. doi: 10.1021/ja01492a058

    36. [36]

      Y. Ren, H. Yamataka. The a-effect in gas-phase SN2 reactions: existence and the origin of the effect[J]. J. Org. Chem., 2007,72:5660-5667. doi: 10.1021/jo070650m

    37. [37]

      W. Xu, Y.Y. Fu, Y.X. Gao. A simple but highly efficient multi-formyl phenolamine system for fluorescence detection of peroxide explosive vapour[J]. Chem. Commun., 2015,51:10868-10870. doi: 10.1039/C5CC03406J

    38. [38]

      S. Malashikhin, N.S. Finney. Fluorescent signaling based on sulfoxide profluorophores: application to the visual detection of the explosive TATP[J]. J. Am. Chem. Soc., 2008,130:12846-12847. doi: 10.1021/ja802989v

    39. [39]

      R. Schulte-Ladbeck, P. Kolla, U. Karst. A field test for the detection of peroxidebased explosives[J]. Analyst, 2002,127:1152-1154. doi: 10.1039/b206673b

    40. [40]

      Y.Y. Qian, L. Xue, D.X. Hu, G.P. Li, H. Jiang. Quinoline-based fluorescent probe for ratiometric detection of hydrogen peroxide in aqueous solution[J]. Dyes Pigments, 2012,95:373-376. doi: 10.1016/j.dyepig.2012.05.013

    41. [41]

      J. Xu, Q. Li, Y. Yue, Y. Guo, S.J. Shao. A water-soluble BODIPY derivative as a highly selective "Turn-On" fluorescent sensor for H2O2 sensing in vivo[J]. Biosens. Bioelectron., 2014,56:58-63. doi: 10.1016/j.bios.2013.12.065

    42. [42]

      Y.M. Shen, B. Kong, X.F. Peng. A new turn-off fluorescence chemosensor for hydrogen peroxide based on carbazole derivative in aqueous solution[J]. Adv. Mater. Res., 2014,1006-1007:821-825. doi: 10.4028/www.scientific.net/AMR.1006-1007

    43. [43]

      M. Kumar, N. Kumar, V. Bhalla, P.R. Sharma, Y. Qurishi. A charge transfer assisted fluorescent probe for selective detection of hydrogen peroxide among different reactive oxygen species[J]. Chem. Commun., 2012,48:4719-4721. doi: 10.1039/c2cc30932g

    44. [44]

      B.C. Dickinson, C. Huynh, C.J. Chang. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells[J]. J. Am. Chem. Soc., 2010,132:5906-5915. doi: 10.1021/ja1014103

    45. [45]

      D. Srikun, A.E. Albers, C.I. Nam, A.T. Iavarone, C.J. Chang. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling[J]. J. Am. Chem. Soc., 2010,132:4455-4465. doi: 10.1021/ja100117u

    46. [46]

      M.E. Germain, M.J. Knapp. Turn-on fluorescence detection of H2O2 and TATP[J]. Inorg. Chem., 2008,47:9748-9750. doi: 10.1021/ic801317x

    47. [47]

      Y.Y. Fu, Q.G. He, D.F. Zhu. A BODIPY dye as a reactive chromophoric/ fluorogenic probe for selective and quick detection of vapors of secondary amines[J]. Chem. Commun., 2013,49:11266-11268. doi: 10.1039/c3cc46571c

    48. [48]

      A. Matsumoto, R. Nishiyabu, Y. Kubo. Synthesis of a borylated boron-dibenzopyrromethene dye enabling the visual detection of H2O2 vapor[J]. RSC Adv., 2014,4:37973-37978. doi: 10.1039/C4RA06061J

    49. [49]

      J.Y. Zheng, Y.L. Yan, X.P. Wang. Hydrogen peroxide vapor sensing with organic core/sheath nanowire optical waveguides[J]. Adv. Mater., 2012,24:OP194-OP199.  

    50. [50]

      W.H. Zhang, W.D. Zhang, L.Y. Chen. Highly sensitive detection of explosive triacetone triperoxide by an In2O3 sensor[J]. Nanotechnology, 2010,21315502. doi: 10.1088/0957-4484/21/31/315502

    51. [51]

      M. Xu, B.R. Bunes, L. Zang. Paper-based vapor detection of hydrogen peroxide: colorimetric sensing with tunable interface[J]. ACS Appl. Mater. Interfaces, 2011,3:642-647. doi: 10.1021/am1012535

    52. [52]

      M. Xu, J.M. Han, Y.Q. Zhang, X.M. Yang, L. Zang. A selective fluorescence turn-on sensor for trace vapor detection of hydrogen peroxide[J]. Chem. Commun., 2013,49:11779-11781. doi: 10.1039/c3cc47631f

    53. [53]

      M. Xu, J.M. Han, C. Wang. Fluorescence ratiometric sensor for trace vapor detection of hydrogen peroxide[J]. ACS Appl. Mater. Interfaces, 2014,6:8708-8714. doi: 10.1021/am501502v

    54. [54]

      S. Rochat, T.M. Swager. Conjugated amplifying polymers for optical sensing applications[J]. ACS Appl. Mater. Interfaces, 2013,5:4488-4502. doi: 10.1021/am400939w

    55. [55]

      J.C. Sanchez, W.C. Trogler. Polymerization of a boronate-functionalized fluorophore by double transesterification: applications to fluorescence detection of hydrogen peroxide vapor[J]. J. Mater. Chem., 2008,18:5134-5141. doi: 10.1039/b809674k

    56. [56]

      L., Y.X., Y.Y., etal.. Borate ester endcappedfluorescent hyperbranched conjugated polymer for trace peroxide explosive vapor detection[J]. RSC Adv., 2015,5:29624-29630. doi: 10.1039/C5RA02472B

    57. [57]

      D. Armitt, P. Zimmermann, S. Ellis-Steinborner. Gas chromatography/mass spectrometry analysis of triacetone triperoxide (TATP) degradation products[J]. Rapid Commun. Mass Spectrom., 2008,22:950-958. doi: 10.1002/(ISSN)1097-0231

    58. [58]

      H.W. Lin, K.S. Suslick. A colorimetric sensor array for detection of triacetone triperoxide vapor[J]. J. Am. Chem. Soc., 2010,132:15519-15521. doi: 10.1021/ja107419t

    59. [59]

      C. He, D.F. Zhu, Q.G. He. A highly efficient fluorescent sensor of explosive peroxide vapor via ZnO nanorod array catalyzed deboronation of pyrenyl borate[J]. Chem. Commun., 2012,48:5739-5741. doi: 10.1039/c2cc31386c

    60. [60]

      M.H. Lan, Y.F. Di, X.Y. Zhu. A carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism[J]. Chem. Commun., 2015,51:15574-15577. doi: 10.1039/C5CC05835J

    61. [61]

      Z.Y. Can, A. Üzer, K. Türkekul, E. Erçağ, R. Apak. Determination of triacetone triperoxide with a N,N-dimethyl-p-phenylenediamine sensor on nafion using Fe3O4 magnetic nanoparticles[J]. Anal. Chem., 2015,87:9589-9594. doi: 10.1021/acs.analchem.5b01775

    62. [62]

      E. Capua, R. Cao, C.N. Sukenik, R. Naaman. Detection of triacetone triperoxide (TATP) with an array of sensors based on non-specific interactions[J]. Sensor. Actuat. B Chem., 2009,140:122-127. doi: 10.1016/j.snb.2009.04.045

    63. [63]

      K.Y. Hua, C.M. Deng, C. He. Organic semiconductors-coated polyacrylonitrile (PAN) electrospun nanofibrous mats for highly sensitive chemosensors via evanescent-wave guiding effect[J]. Chin. Chem. Lett., 2013,24:643-646. doi: 10.1016/j.cclet.2013.04.033

  • 加载中
    1. [1]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195

    2. [2]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    3. [3]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    4. [4]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    5. [5]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    6. [6]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    7. [7]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    8. [8]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    9. [9]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    10. [10]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    11. [11]

      Haiying Wei Daqing Yang Mingtao Run Guoyan Huo . Examination and Analysis on Rationality of Experimental Design: Based on Reaction of Potassium Permanganate with Potassium Bormide. University Chemistry, 2024, 39(10): 283-288. doi: 10.12461/PKU.DXHX202404068

    12. [12]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    13. [13]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    14. [14]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    15. [15]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    16. [16]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    17. [17]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    18. [18]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    19. [19]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    20. [20]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

Metrics
  • PDF Downloads(2)
  • Abstract views(729)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return