Citation: Jiang-Yang Shao, Chang-Jiang Yao, Bin-Bin Cui, Zhong-Liang Gong, Yu-Wu Zhong. Electropolymerized films of redox-active ruthenium complexes for multistate near-infrared electrochromism, ion sensing, and information storage[J]. Chinese Chemical Letters, ;2016, 27(8): 1105-1114. doi: 10.1016/j.cclet.2016.05.018 shu

Electropolymerized films of redox-active ruthenium complexes for multistate near-infrared electrochromism, ion sensing, and information storage

  • Corresponding author: Yu-Wu Zhong, date.zhongyuwu@iccas.ac.cn
  • Received Date: 24 March 2016
    Revised Date: 6 May 2016
    Accepted Date: 20 May 2016
    Available Online: 27 August 2016

Figures(11)

  • This paper summarizes our recent progress on the preparations and applications of electropolymerized thin films of redox-active ruthenium complexes. Thin films of vinyl-functionalized diruthenium or ruthenium-amine conjugated complexes are prepared by reductive electropolymerization. The resulting films are useful for multistate near-infrared electrochromism, ion sensing, and mimicking flip-flop and flip-flap-flop logic gates. The oxidative electropolymerization of diruthenium complexes with two distal triarylamine units affords electropolymers with an alternating diruthenium and tetraphenylbenzidine structural unit. The applications of the resulting films in multistate near-infrared electrochromism and resistive memory are discussed.
  • 加载中
    1. [1]

      R.J. Mortimer. Electrochromic materials[J]. Chem. Soc. Rev., 1997,26:147-156. doi: 10.1039/cs9972600147

    2. [2]

      P.M. Beaujuge, J.R. Reynolds. Color control in p-conjugated organic polymers for use in electrochromic devices[J]. Chem. Rev., 2010,110:268-320. doi: 10.1021/cr900129a

    3. [3]

      X.D. Wu, Y.S. Wu, C.Y. Zhang. Polyurethanes prepared from isocyanates containing triphenylamine derivatives: synthesis and optical, electrochemical, electrochromic and memory properties[J]. RSC Adv., 2015,5:58843-58853. doi: 10.1039/C5RA09361A

    4. [4]

      L. Beverina, G.A. Pagani, M. Sassi. Multichromophoric electrochromic polymers: colour tuning of conjugated polymers through the side chain functionalization approach[J]. Chem. Commun., 2014,50:5413-5430. doi: 10.1039/c4cc00163j

    5. [5]

      E.L. Runnerstrom, A. Llordés, S.D. Lounis, D.J. Milliron. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals[J]. Chem. Commun., 2014,50:10555-10572. doi: 10.1039/C4CC03109A

    6. [6]

      J.W. Liu, J. Zheng, J.L. Wang. Ultrathin W18O49 nanowire assemblies for electrochromic devices[J]. Nano Lett., 2013,13:3589-3593. doi: 10.1021/nl401304n

    7. [7]

      B. Yao, F.K. Chen, H. Jiang, J. Zhang, X.H. Wan. Isomer effect on the near-infrared electrochromism of anthraquinone imides[J]. Electrochim. Acta, 2015,166:73-81. doi: 10.1016/j.electacta.2015.03.057

    8. [8]

      M. Higuchi. Stimuli-responsive metallo-supramolecular polymer films: design, synthesis and device fabrication[J]. J. Mater. Chem. C, 2014,2:9331-9341.  

    9. [9]

      R.J. Mortimer, D.R. Rosseinsky, P.M.S. Monk, Electrochromic Materials and Devices, Wiley-VCH, Weinheim, 2015, pp. 185-210.

    10. [10]

      S. Wang, X.Z. Li, S.D. Xun, X.H. Wan, Z.Y. Wang. Near-Infrared electrochromic and electroluminescent polymers containing pendant ruthenium complex groups[J]. Macromolecules, 2006,39:7502-7507. doi: 10.1021/ma061751+

    11. [11]

      G. Sonmez. Polymeric electrochromics[J]. Chem. Commun., 2005:5251-5259.

    12. [12]

      U.S. Schubert, C. Eschbaumer. Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers[J]. Angew. Chem. Int. Ed., 2002,41:2892-2926. doi: 10.1002/1521-3773(20020816)41:16<2892::AID-ANIE2892>3.0.CO;2-6

    13. [13]

      I. Eryazici, C.N. Moorefield, G.R. Newkome, square-planar Pd(II). Pt(II), and Au(III) terpyridine complexes: their syntheses, physical properties, supramolecular constructs, and biomedical activities[J]. Chem. Rev., 2008,108:1834-1895. doi: 10.1021/cr0781059

    14. [14]

      E.A. Medlycott, G.S. Hanan. Designing tridentate ligands for ruthenium(II) complexes with prolonged room temperature luminescence lifetimes[J]. Chem. Soc. Rev., 2005,34:133-142. doi: 10.1039/b316486c

    15. [15]

      J.A.G. Williams. The coordination chemistry of dipyridylbenzene: N-deficient terpyridine or panacea for brightly luminescent metal complexes[J]. Chem. Soc. Rev., 2009,38:1783-1801. doi: 10.1039/b804434c

    16. [16]

      M.J. Sun, H.J. Nie, J.N. Yao, Y.W. Zhong. Bis-triarylamine with a cyclometalated diosmium bridge: a multi-state redox-active system[J]. Chin. Chem. Lett., 2015,26:649-652. doi: 10.1016/j.cclet.2015.03.032

    17. [17]

      M. Abe, H. Futagawa, T. Ono. An electropolymerized crystalline film incorporating axially-bound metalloporphycenes: remarkable reversibility, reproducibility, and coloration efficiency of ruthenium(II/III)-based electrochromism[J]. Inorg. Chem., 2015,54:11061-11063. doi: 10.1021/acs.inorgchem.5b02129

    18. [18]

      M. Chhatwal, A. Kumar, S.K. Awasthi, M. Zharnikov, R.D. Gupta. An electroactive metallo-polypyrene film as a molecular scaffold for multi-state volatile memory devices[J]. J. Phys. Chem. C, 2016,120:2335-2342. doi: 10.1021/acs.jpcc.5b12597

    19. [19]

      A. Maier, A.R. Rabindranath, B. Tieke. Fast-switching electrochromic films of zinc polyiminofluorene-terpyridine prepared upon coordinative supramolecular assembly[J]. Adv. Mater., 2009,21:959-963. doi: 10.1002/adma.v21:9

    20. [20]

      S.J. Vickers, M.D. Ward. Facile preparation of a visible- and near-infrared-active electrochromic film by direct deposition of a ruthenium dioxolene complex on an ITO/glass surface[J]. Electrochem. Commun., 2005,7:389-393. doi: 10.1016/j.elecom.2005.02.013

    21. [21]

      C.S. Grange, A.J.H.M. Meijer, M.D. Ward. Trinuclear ruthenium dioxolene complexes based on the bridging ligand hexahydroxytriphenylene: electrochemistry, spectroscopy, and near-infrared electrochromic behaviour associated with a reversible seven-membered redox chain[J]. Dalton Trans., 2010,39:200-211. doi: 10.1039/B918086A

    22. [22]

      B.B. Cui, Y.W. Zhong, J.N. Yao. Three-state near-infrared electrochromism at the molecular scale[J]. J. Am. Chem. Soc., 2015,137:4058-4061. doi: 10.1021/jacs.5b00586

    23. [23]

      I.K. Ding, J. Melas-Kyriazi, N.L. Cevey-Ha. Deposition of hole-transport materials in solid-state dye-sensitized solar cells by doctor-blading[J]. Org. Electron., 2010,11:1217-1222. doi: 10.1016/j.orgel.2010.04.019

    24. [24]

      P. Denisevich, H.D. Abruña, C.R. Leidner. Electropolymerization of vinylpyridine and vinylbipyridine complexes of iron and ruthenium: homopolymers, copolymers, reactive polymers[J]. Inorg. Chem., 1982,21:2153-2161. doi: 10.1021/ic00136a006

    25. [25]

      Y.W. Zhong, C.J. Yao, H.J. Nie. Electropolymerized films of vinyl-substituted polypyridine complexes: synthesis, characterization, and applications[J]. Coord. Chem. Rev., 2013,257:1357-1372. doi: 10.1016/j.ccr.2013.01.001

    26. [26]

      C. Friebe, M.D. Hager, A. Winter, U.S. Schubert. Metal-containing polymers via electropolymerization[J]. Adv. Mater., 2012,24:332-345. doi: 10.1002/adma.201103420

    27. [27]

      H.D. Abrun ã, P. Denisevich, M. Uman ã, T.J. Meyer, R.W. Murray. Rectifying interfaces using two-layer films of electrochemically polymerized vinylpyridine and vinylbipyridine complexes of ruthenium and iron on electrodes[J]. J. Am. Chem. Soc., 1981,103:1-5. doi: 10.1021/ja00391a001

    28. [28]

      J.M. Calvert, R.H. Schmehl, B.P. Sullivan. Synthetic and mechanistic investigations of the reductive electrochemical polymerization of vinyl-containing complexes of iron(II), ruthenium(II), and osmium(II)[J]. Inorg. Chem., 1983,22:2151-2162. doi: 10.1021/ic00157a013

    29. [29]

      O. Fussa-Rydel, H.T. Zhang, J.T. Hupp, C.R. Leidner. Electrochemical assembly of metallopolymeric films via reduction of coordinated 5-chlorophenanthroline[J]. Inorg. Chem., 1989,28:1533-1537. doi: 10.1021/ic00307a022

    30. [30]

      S.C. Huang, C.Y. Lin. Reductive electropolymerization of N-methyl-3-pyridylethynyl-porphyrins[J]. Chem. Commun., 2015,51:519-521. doi: 10.1039/C4CC08157A

    31. [31]

      M.O. Wolf. Transition-metal-polythiophene hybrid materials[J]. Adv. Mater., 2001,13:545-553. doi: 10.1002/(ISSN)1521-4095

    32. [32]

      A. Deronzier, J.C. Moutet. Polypyrrole films containing metal complexes: syntheses and applications[J]. Coord. Chem. Rev., 1996,147:339-371. doi: 10.1016/0010-8545(95)01130-7

    33. [33]

      C. Gu, Z.B. Zhang, S.H. Sun. In situ electrochemical deposition and doping of C60 films applied to high-performance inverted organic photovoltaics[J]. Adv. Mater., 2012,24:5727-5731. doi: 10.1002/adma.v24.42

    34. [34]

      C.B.Fan , C.Q. Ye, X.M. Wang. Synthesis and electrochromic properties of new terpyridine-triphenylamine hybrid polymers[J]. Macromolecules, 2015,48:6465-6473. doi: 10.1021/acs.macromol.5b00493

    35. [35]

      H.D. Abruña. Coordination chemistry in two dimensions: chemically modified electrodes[J]. Coord. Chem. Rev., 1988,86:135-189. doi: 10.1016/0010-8545(88)85013-6

    36. [36]

      S. Gould, T.R. O'Toole, T.J. Meyer. Photochemical ligand loss as a basis for imaging and microstructure formation in a thin polymeric film[J]. J. Am. Chem. Soc., 1990,112:9490-9496. doi: 10.1021/ja00182a007

    37. [37]

      R.M. Leasure, W. Ou, J.A. Moss, R.W. Linton, T.J. Meyer. Spatial electrochromism in metallopolymeric films of ruthenium polypyridyl complexes[J]. Chem. Mater., 1996,8:264-273. doi: 10.1021/cm950371s

    38. [38]

      T. Kajita, R.M. Leasure, M. Devenney, D. Friesen, T.J. Meyer. Electropolymerized films of macromeric assemblies[J]. Inorg. Chem., 1998,37:4782-4794. doi: 10.1021/ic971279w

    39. [39]

      K.T. Potts, D.A. Usifer, A. Guadalupe, H.D. Abruna. 4-vinyl-,6-vinyl-, and 4'-vinyl-2,2':6',2"-terpyridinyl ligands: their synthesis and the electrochemistry of their transition-metal coordination complexes[J]. J. Am. Chem. Soc., 1987,109:3961-3967. doi: 10.1021/ja00247a021

    40. [40]

      G.R. Newkome, G.E. Kiefer, N. Matsumura, W.E. Puckett. Chemistry of heterocyclic compounds series. 110. Synthesis of vinyl derivatives of phenanthroline and bipyridine[J]. J. Org. Chem., 1985,50:3807-3810. doi: 10.1021/jo00220a025

    41. [41]

      M.E. Wright, S.R. Pulley. An improved synthesis of 4-vinyl-2,6-di-tert-butylpyridine and its suspension copolymerization with styrene and divinylbenzene[J]. J. Org. Chem., 1987,52:1623-1624. doi: 10.1021/jo00384a051

    42. [42]

      H.J. Nie, J.Y. Shao, J. Wu, J.N. Yao, Y.W. Zhong. Synthesis and reductive electropolymerization of metal complexes with 5,5'-divinyl-2,2'-bipyridine[J]. Organometallics, 2012,31:6952-6959. doi: 10.1021/om300730f

    43. [43]

      Y.W. Zhong, Z.L. Gong, J.Y. Shao, J.N. Yao. Electronic coupling in cyclometalated ruthenium complexes[J]. Coord. Chem. Rev., 2016,312:22-40. doi: 10.1016/j.ccr.2016.01.002

    44. [44]

      C.J. Yao, Y.W. Zhong, J.N. Yao. Charge delocalization in a cyclometalated bisruthenium complex bridged by a noninnocent 1,2,4,5-tetra(2-pyridyl) benzene ligand[J]. J. Am. Chem. Soc., 2011,133:15697-15706. doi: 10.1021/ja205879y

    45. [45]

      C.J. Yao, H.J. Nie, W.W. Yang, J.N. Yao, Y.W. Zhong. Combined experimental and computational study of pyren-2,7-diyl-bridged diruthenium complexes with various terminal ligands[J]. Inorg. Chem., 2015,54:4688-4698. doi: 10.1021/ic503117k

    46. [46]

      C.J. Yao, Y.W. Zhong, H.J. Nie, H.D. Abruña, J.N. Yao. Near-IR electrochromism in electropolymerized films of a biscyclometalated ruthenium complex bridged by 1,2,4,5-tetra(2-pyridyl)benzene[J]. J. Am. Chem. Soc., 2011,133:20720-20723. doi: 10.1021/ja209620p

    47. [47]

      C.J. Yao, J.N. Yao, Y.W. Zhong. Metallopolymeric films based on a biscyclometalated ruthenium complex bridged by 1,3,6,8-tetra(2-pyridyl)pyrene: applications in near-infrared electrochromic windows[J]. Inorg. Chem., 2012,51:6259-6263. doi: 10.1021/ic3004646

    48. [48]

      H.J. Nie, Y.W. Zhong. Near-infrared electrochromism in electropolymerized metallopolymeric films of a phen-1,4-diyl-bridged diruthenium complex[J]. Inorg. Chem., 2014,53:11316-11322. doi: 10.1021/ic5019967

    49. [49]

      C.J. Yao, R.H. Zheng, Q. Shi, Y.W. Zhong, J.J. Yao. 1,4-Benzene-bridged covalent hybrid of triarylamine and cyclometalated ruthenium: a new type of organicinorganic mixed-valent system[J]. Chem. Commun., 2012,4:5680-5682.

    50. [50]

      B.B. Cui, C.J. Yao, J.N. Yao, Y.W. Zhong. Electropolymerized films as a molecular platform for volatile memory devices with two near-infrared outputs and long retention time[J]. Chem. Sci., 2014,5:932-941. doi: 10.1039/C3SC52815D

    51. [51]

      G. de Ruiter, E. Tartakovsky, N. Oded, M.E. van der Boom. Sequential logic operations with surface-confined polypyridyl complexes displaying molecular random access memory features[J]. Angew. Chem. Int. Ed., 2010,49:169-172. doi: 10.1002/anie.200905358

    52. [52]

      B.B. Cui, J.H. Tang, J.N. Yao, Y.W. Zhong. A molecular platform for multistate nearinfrared electrochromism and flip-flop, flip-flap-flop, and ternary memory[J]. Angew. Chem. Int. Ed., 2015,54:9192-9197. doi: 10.1002/anie.201504584

    53. [53]

      H.N. Kim, Z.Q. Guo, W.H. Zhu, J. Yoon, H. Tian. Recent progress on polymer-based fluorescent and colorimetric chemosensors[J]. Chem. Soc. Rev., 2011,40:79-93. doi: 10.1039/C0CS00058B

    54. [54]

      Y.Y. Yao, L. Zhang, Z.F. Wang, J.K. Xu, Y.P. Wen. Electrochemical determination of quercetin by self-assembled platinum nanoparticles/poly(hydroxymethylated-3,4-ethylenedioxylthiophene) nanocomposite modified glassy carbon electrode[J]. Chin. Chem. Lett., 2014,25:505-510. doi: 10.1016/j.cclet.2014.01.028

    55. [55]

      Y.W. Gao, H. Bai, G.Q. Shi. Electrosynthesis of oligo(methoxyl pyrene) for turn-on fluorescence detection of volatile aromatic compounds[J]. J. Mater. Chem., 2010,20:2993-2998. doi: 10.1039/b924992c

    56. [56]

      Z.L. Gong, B.B. Cui, W.W. Yang, J.N. Yao, Y.W. Zhong. Reversible multichannel detection of Cu2+ using an electropolymerized film[J]. Electrochim. Acta, 2014,130:748-753. doi: 10.1016/j.electacta.2014.03.096

    57. [57]

      Z.L. Gong, Y.W. Zhong. Stepwise coordination followed by oxidation mechanism for the multichannel detection of Cu2+ in an aqueous environment[J]. Organometallics, 2013,32:7495-7502. doi: 10.1021/om400999h

    58. [58]

      Y.X. Gao, J. Qi, J. Zhang. Fabrication of both the photoactive layer and the electrode by electrochemical assembly: towards a fully solution-processable device[J]. Chem. Commun., 2014,50:10448-10451. doi: 10.1039/C4CC04788E

    59. [59]

      C. Gu, Y.C. Chen, Z.B. Zhang. Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics[J]. Adv. Mater., 2013,25:3443-3448. doi: 10.1002/adma.v25.25

    60. [60]

      C. Gu, N. Huang, Y. Wu, H. Xu, D.L. Jiang. Design of highly photofunctional porous polymer films with controlled thickness and prominent microporosity[J]. Angew. Chem. Int. Ed., 2015,54:11540-11544. doi: 10.1002/anie.201504786

    61. [61]

      C. Friebe, B. Schulze, H. Görls, M. Jäger, U.S. Schubert. Designing cyclometalated ruthenium(II) complexes for anodic electropolymerization[J]. Chem. Eur. J., 2014,20:2357-2366. doi: 10.1002/chem.201301439

    62. [62]

      L.J. Wang, K. Zhang, F.Y. Cheng, J. Chen. Polypyrrole-cobalt-carbon nanocomposites as efficient counter electrode materials for dye-sensitized solar cells[J]. Sci. China Chem., 2014,57:1559-1563. doi: 10.1007/s11426-014-5121-z

    63. [63]

      A. Venkatanarayanan, A.M. Spehar-Délèze, L. Dennany. Ruthenium aminophenanthroline metallopolymer films electropolymerized from an ionic liquid: deposition and electrochemical and photonic properties[J]. Langmuir, 2008,24:11233-11238. doi: 10.1021/la8011316

    64. [64]

      D.F. Qiu, Q. Zhao, X.Y. Bao. Electropolymerization and characterization of an alternatively conjugated donor-acceptor metallopolymer: Poly-[Ru(4'-(4-(Diphenylamino)phenyl)-2,2':6',2"-Terpyridine)2]2+[J]. Inorg. Chem. Commun., 2011,14:296-299. doi: 10.1016/j.inoche.2010.11.019

    65. [65]

      Y.Y. Zhu, C. Gu, S. Tang. A new kind of peripheral carbazole substituted ruthenium(II) complexes for electrochemical deposition organic light-emitting diodes[J]. J. Mater. Chem., 2009,19:3941-3949. doi: 10.1039/b900481e

    66. [66]

      D.F. Qiu, X.Y. Bao, Q. Zhao. Near-IR electrochromic film prepared by oxidative electropolymerization of the cyclometalated Pt(II) chloride with a triphenylamine group[J]. Inorg. Chem., 2015,54:8264-8270. doi: 10.1021/acs.inorgchem.5b00782

    67. [67]

      M.K. Leung, M.Y. Chou, Y.O. Su. Diphenylamino group as an effective handle to conjugated donor acceptor polymers through electropolymerization[J]. Org. Lett., 2003,5:839-842. doi: 10.1021/ol027474i

    68. [68]

      H.J. Yen, H.Y. Lin, G.S. Liou. Novel starburst triarylamine-containing electroactive aramids with highly stable electrochromism in near-infrared and visible light regions[J]. Chem. Mater., 2011,23:1874-1882. doi: 10.1021/cm103552k

    69. [69]

      C.J. Yao, Y.W. Zhong, J.N. Yao. Five-stage near-infrared electrochromism in electropolymerized films composed of alternating cyclometalated bisruthenium and Bis-triarylamine segments[J]. Inorg. Chem., 2013,52:10000-10008. doi: 10.1021/ic401288g

    70. [70]

      K. Sreenath, C.V. Suneesh, V.K.R. Kumar, K.R. Gopidas. Cu(II)-mediated generation of triarylamine radical cations and their dimerization. An easy route to tetraarylbenzidines[J]. J. Org. Chem., 2008,73:3245-3251. doi: 10.1021/jo800349n

    71. [71]

      W.P. Lin, S.J. Liu, T. Gong, Q. Zhao, W. Huang. Polymer-based resistive memory materials and devices[J]. Adv. Mater., 2014,26:570-606. doi: 10.1002/adma.v26.4

    72. [72]

      P.Y. Gu, F. Zhou, J.K. Gao. Synthesis, characterization, and nonvolatile ternary memory behavior of a larger heteroacene with nine linearly fused rings and two different heteroatoms[J]. J. Am. Chem. Soc., 2013,135:14086-14089. doi: 10.1021/ja408208c

    73. [73]

      S.J. Liu, P. Wang, Q. Zhao. Single polymer-based ternary electronic memory material and device[J]. Adv. Mater., 2012,24:2901-2905. doi: 10.1002/adma.v24.21

    74. [74]

      B.B. Cui, Z.P. Mao, Y.X. Chen. Tuning of resistive memory switching in electropolymerized metallopolymeric films[J]. Chem. Sci., 2015,6:1308-1315. doi: 10.1039/C4SC03345K

    75. [75]

      M. Li, J. Zhang, H.J. Nie. In situ switching layer-by-layer assembly: one-pot rapid layer assembly via alternation of reductive and oxidative electropolymerization[J]. Chem. Commun., 2013,49:6879-6881. doi: 10.1039/c3cc43629b

    76. [76]

      X.D. Xu, C.J. Yao, L.J. Chen. Facile construction of structurally defined porous membranes from supramolecular hexakistriphenylamine metallacycles through electropolymerization[J]. Chem. Eur. J., 2016,22:5211-5218. doi: 10.1002/chem.201504480

  • 加载中
    1. [1]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    2. [2]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    3. [3]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    4. [4]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    5. [5]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    6. [6]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    7. [7]

      Huanyu LiuGang YuRuoyao GuoHao QiJiayin ZhengTong JinZifeng ZhaoZuqiang BianZhiwei Liu . Direct identification of energy transfer mechanism in Ce-Mn system by constructing molecular heteronuclear complexes. Chinese Chemical Letters, 2025, 36(2): 110296-. doi: 10.1016/j.cclet.2024.110296

    8. [8]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    9. [9]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    10. [10]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    11. [11]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    12. [12]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    13. [13]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    14. [14]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    15. [15]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    16. [16]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    17. [17]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    18. [18]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    19. [19]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    20. [20]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

Metrics
  • PDF Downloads(1)
  • Abstract views(716)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return