Citation: Jia-Dong Zhou, Wen-Qiang Zhang, Lin-Lin Liu, Zeng-Qi Xie, Yu-Guang Ma. Aggregation structures of organic conjugated molecules on their optoelectronic properties[J]. Chinese Chemical Letters, ;2016, 27(8): 1350-1356. doi: 10.1016/j.cclet.2016.05.014 shu

Aggregation structures of organic conjugated molecules on their optoelectronic properties

  • Corresponding author: Zeng-Qi Xie, date.msxiez@scut.edu.cn Yu-Guang Ma, ygma@scut.edu.cn
  • Received Date: 27 April 2016
    Revised Date: 11 May 2016
    Accepted Date: 17 May 2016
    Available Online: 26 August 2016

Figures(6)

  • The intimate connection between stacking modes and optoelectronic properties of organic conjugated materials has been discussed from the viewpoints of developing microscopic models and further understanding of their functions and potential applications. In particular, three basal dimer configurations (cofacial configuration, staggered configuration, and crossed configuration) and their respective optical (including radiative and non-radiative) and electrical properties are expatiated in detail. Eventually, we put forward the perspective on achieving the promising laser material that features high fluorescence quantum yield and charge mobility.
  • 加载中
    1. [1]

      A.S. Davydov. Theory of absorption spectra of molecular crystals[J]. Ukr. J. Phys., 2008,53:65-70.  

    2. [2]

      (a) S.V. Frolov, W. Gellermann, Z.V. Vardeny, M. Ozaki, K. Yoshino, Picosecond photophysics of luminescent conducting polymers from excitons to polaron pairs, Synth. Met. 84(1997) 493-496; (b) J. Cornil, D. Beljonne, J.P. Calbert, J.L. Brédas, Interchain interactions in organic π-conjugated materials: impact on electronic structure, optical response, and charge transport, Adv. Mater. 13(2001) 1053-1067; (c) V. Coropceanu, J. Cornil, D.A. da Silva Filho, et al., Charge transport in organic semiconductors, Chem. Rev. 107(2007) 926-952; (d) F.C. Spano, The spectral signatures of Frenkelpolarons in H-and J-aggregates, Acc. Chem. Res. 43(2009) 429-439. 

    3. [3]

      M.E. Gershenson, V. Podzorov, A.F. Morpurgo. Colloquium:electronictransport in single-crystal organic transistors[J]. Rev. Mod. Phys., 2006,78:973-989. doi: 10.1103/RevModPhys.78.973

    4. [4]

      M. Shimizu, T. Hiyama. Organic fluorophores exhibiting highly efficient photoluminescence in the solid state[J]. Chem. Asian J., 2010,5:1516-1531. doi: 10.1002/asia.v5:7

    5. [5]

      H.L. Dong, X.L. Fu, J. Liu, Z.R. Wang, W.P. Hu. 25th anniversary article: key points for high-mobility organic field-effect transistors[J]. Adv. Mater, 2013,25:6158-6183. doi: 10.1002/adma.v25.43

    6. [6]

      M. Kasha, H.R. Rawls, M.A. El-Bayoumi. The exciton model in molecular spectroscopy[J]. Pure Appl. Chem., 1965,11:371-392.  

    7. [7]

      R.M. Hochstrasser, M. Kasha. Application of the exciton model to mono-molecular lamellar systems[J]. Photochem. Photobiol., 1964,3:317-331. doi: 10.1111/php.1964.3.issue-4

    8. [8]

      H. Wang, B.L. Yue, Z.Q. Xie. Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Förster energy transfer, Phys[J]. Chem. Chem. Phys., 2013,15:3527-3534. doi: 10.1039/c3cp43800g

    9. [9]

      M. Kasha. Energy transfer mechanisms and the molecular exciton model for molecular aggregates[J]. Radiat. Res., 2012,178:AV27-AV34. doi: 10.1667/RRAV03.1

    10. [10]

      O.V. Mikhnenko, P.W.M. Blom, T.Q. Nguyen. Exciton diffusion in organic semiconductors[J]. Energy Environ. Sci., 2015,8:1867-1888. doi: 10.1039/C5EE00925A

    11. [11]

      L.Q. Qin, Y.N. Zhang, X.Y. Wu. In situ electrochemical synthesis and deposition of discotichexa-peri-hexabenzocoronene molecules on electrodes: self-assembled structure, redox properties, and application for supercapacitor[J]. Small, 2015,11:3028-3034. doi: 10.1002/smll.v11.25

    12. [12]

      (a) F. Meinardi, M. Cerminara, A. Sassella, R. Bonifacio, R. Tubino, Superradiance in molecular H aggregates, Phys. Rev. Lett. 91(2003) 247401; (b) S.H. Lim, T.G. Bjorklund, F.C. Spano, C.J. Bardeen, Exciton delocalization and superradiance in tetracene thin films and nanoaggregates, Phys. Rev. Lett. 92(2004) 107402.

    13. [13]

      (a) F. Würthner, Z.J. Chen,V. Dehm, V. Stepanenko, One-dimensional luminescent nanoaggregates of perylenebisimides, Chem. Commun. (2006) 1188-1190; (b) Z.J. Chen, V. Stepanenko, V. Dehm, et al., Photoluminescence and conductivity of self-assembled π-π stacks of perylenebisimide dyes, Chem. Eur. J. 13(2007) 436-449.

    14. [14]

      E.G. McRae, M. Kasha. Enhancement of phosphorescence ability upon aggregation of dye molecules[J]. J. Chem. Phys., 1958,28:721-722. doi: 10.1063/1.1744225

    15. [15]

      S. Basak, N. Nandi, K. Bhattacharyya, A. Datta, A. Banerjee. Fluorescence from an H-aggregated naphthalenediimide based peptide: photophysical and computational investigation of this rare phenomenon[J]. Phys. Chem. Chem. Phys., 2015,17:30398-30403. doi: 10.1039/C5CP05236J

    16. [16]

      A.T. Haedler, K. Kreger, A. Issac. Long-range energy transport in single supramolecularnanofibres at room temperature[J]. Nature, 2015,523:196-199. doi: 10.1038/nature14570

    17. [17]

      F.C. Spano, S. Mukamel. Superradiance in molecular aggregates[J]. J. Chem. Phys., 1989,91:683-700. doi: 10.1063/1.457174

    18. [18]

      S. Ghosh, X.Q. Li, V. Stepanenko, F. Würthner. Control of H-and J-type π stacking by peripheral alkyl chains and self-sorting phenomena in perylenebisimide homo-and heteroaggregates[J]. Chem. Eur. J., 2008,14:11343-11357. doi: 10.1002/chem.200801454

    19. [19]

      (a) Z.Q. Xie, F. Würthner, Perylenebisimides with rigid 2,2'-biphenol bridges at bay area as conjugated chiral platforms, Org. Lett. 12(2010) 3204-3207; (b) Z.Q. Xie, V. Stepanenko, K. Radacki, F. Würthner, Chiral J-aggregates of atropoenantiomericperylenebisimides and their self-sorting behavior, Chem. Eur. J. 18(2012) 7060-7070.

    20. [20]

      Z.Q. Xie, V. Stepanenko, B. Fimmel, F. Würthner. An organogelator design without solubilizing side chains by backbone contortion of a perylenebisimide pigment[J]. Mater. Horiz., 2014,1:355-359. doi: 10.1039/c3mh00159h

    21. [21]

      Z.Q. Xie, B. Xiao, Z.C. He. Self-assembled perylenebisimide J-aggregates as promising cathode modifiers for highly efficient inverted polymer solar cells[J]. Mater. Horiz., 2015,2:514-518. doi: 10.1039/C5MH00056D

    22. [22]

      J.C. Ribierre, M. Sato, A. Ishizuka. Organic field-effect transistors based on J-aggregate thin films of a bisazomethine dye[J]. Org. Electron., 2012,13:999-1003. doi: 10.1016/j.orgel.2012.02.020

    23. [23]

      F.C. Spano, C. Silva. H-and J-aggregate behavior in polymeric semiconductors[J]. Annu. Rev. Phys. Chem., 2014,65:477-500. doi: 10.1146/annurev-physchem-040513-103639

    24. [24]

      (a) J.E. Anthony, Functionalized acenes and heteroacenes for organic electronics, Chem. Rev. 106(2006) 5028-5048; (b) J.E. Anthony, The larger acenes: versatile organic semiconductors, Angew. Chem. Int. Ed. 47(2008) 452-483.

    25. [25]

      J. Gierschner, S.Y. Park. Luminescent distyrylbenzenes: tailoring molecular structure and crystalline morphology[J]. J. Mater. Chem. C, 2013,1:5818-5832. doi: 10.1039/c3tc31062k

    26. [26]

      M.H. Yoon, A. Facchetti, C.E. Stern, T.J. Marks. Fluorocarbon-modified organic semiconductors: molecular architecture, electronic, and crystal structure tuning of arene-versus fluoroarene-thiophene oligomer thin-film properties[J]. J. Am. Chem. Soc., 2006,128:5792-5801. doi: 10.1021/ja060016a

    27. [27]

      (a) J. Deng, J. Tang, Y.X. Xu, et al., Cyano-substituted oligo(p-phenylenevinylene) single-crystal with balanced hole and electron injection and transport for ambipolar field-effect transistors, Phys. Chem. Chem. Phys. 17(2015) 3421-3425; (b) J. Deng, Y.X. Xu, L.Q. Liu, et al., An ambipolar organic field-effect transistor basedonanAIE-activesinglecrystalwithahighmobilitylevelof 2.0cm2V-1s-1, Chem. Commun. 52(2016) 2370-2373.

    28. [28]

      (a) J. Cornil, D.A. Dos Santos, X. Crispin, R. Silbey, J.L. Brédas, Influence of interchain interactions on the absorption and luminescence of conjugated oligomers and polymers: a quantum-chemical characterization, J. Am. Chem. Soc. 120(1998) 1289-1299; (b) M.C.R. Delgado, K.R. Pigg, D.A. da Silva Filho, et al., Impact of perfluorination on the charge-transport parameters of oligoacene crystals, J. Am. Chem. Soc. 131(2009) 1502-1512.

    29. [29]

      Z.Q. Xie, B. Yang, F. Li. Cross dipole stacking in the crystal of distyrylbenzene derivative: the approach toward high solid-state luminescence efficiency[J]. J. Am. Chem. Soc., 2005,127:14152-14153. doi: 10.1021/ja054661d

    30. [30]

      (a) N. Sanyal, P.M. Lahti, Hydrogen-bond-assisted, crossed dipole π-stacking in 1, 4-bis (phenylethynyl) benzene, Cryst. Growth Des. 6(2006) 1253-1255; (b) C.H. Zhao, A. Wakamiya, Y. Inukai, S. Yamaguchi, Highly emissive organic solids containing 2,5-diboryl-1,4-phenylene unit, J. Am. Chem. Soc. 128(2006) 15934-15935.

    31. [31]

      S.Q. Ma, J.B. Zhang, J.Y. Qian. Efficient spontaneous and stimulated emission from 1,4-bis(2,2-diphenylvinyl)benzene single crystals with cross-dipole stacking[J]. Adv. Opt. Mater., 2015,3:763-768. doi: 10.1002/adom.v3.6

    32. [32]

      (a) Z.Q. Xie, W.J. Xie, F. Li, et al., Controlling supramolecular microstructure to realize highly efficient nondoped deep blue organic light-emitting devices: the role of diphenyl substituents in distyrylbenzene derivatives, J. Phys. Chem. C 112(2008) 9066-9071; (b) B. Yang, Y.G. Ma, J.C. Shen, Stacking mode, optoelectronic property and supramolecular control method in π-conjugated organic molecules, Chem. J. Chin Univ. 29(2008) 2643-2658.

    33. [33]

      Y.K. Che, X.M. Yang, K. Balakrishnan, J.M. Zuo, L. Zang. Highly polarized and selfwaveguided emission from single-crystalline organic nanobelts[J]. Chem. Mater., 2009,21:2930-2934. doi: 10.1021/cm9007409

    34. [34]

      Q. Miao, X.L. Chi, S.X. Xiao. Organization of acenes with a cruciform assembly motif[J]. J. Am. Chem. Soc., 2006,128:1340-1345. doi: 10.1021/ja0570786

    35. [35]

      J. Liu, L.Q. Meng, W.G. Zhu. A cross-dipole stacking molecule of an anthracene derivative: integrating optical and electrical properties[J]. J. Mater. Chem. C, 2015,3:3068-3071. doi: 10.1039/C4TC02964J

  • 加载中
    1. [1]

      Xuejian XingPan ZhuE PangShaojing ZhaoYu TangZheyu HuQuchang OuyangMinhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452

    2. [2]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    3. [3]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    4. [4]

      Min LiuBin FengFeiyi ChuDuoyang FanFan ZhengFei ChenWenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043

    5. [5]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    6. [6]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    7. [7]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    8. [8]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    9. [9]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    10. [10]

      Tong-Tong ZhouGuan-Yu DingXue LiLi-Li WenXiao-Xu PangYing-Chen DuanJu-Yang HeGuo-Gang ShanZhong-Min Su . Design of near-infrared aggregation-induced emission photosensitizers by π-bridge engineering for boosting theranostic efficacy. Chinese Chemical Letters, 2025, 36(6): 110341-. doi: 10.1016/j.cclet.2024.110341

    11. [11]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    12. [12]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    13. [13]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    14. [14]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    15. [15]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    16. [16]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    17. [17]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    18. [18]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    19. [19]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    20. [20]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

Metrics
  • PDF Downloads(3)
  • Abstract views(961)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return