Citation: Xiao-Peng Xu, Ying Li, Mei-Ming Luo, Qiang Peng. Recent progress towards fluorinated copolymers for efficient photovoltaic applications[J]. Chinese Chemical Letters, ;2016, 27(8): 1241-1249. doi: 10.1016/j.cclet.2016.05.006 shu

Recent progress towards fluorinated copolymers for efficient photovoltaic applications

  • Corresponding author: Qiang Peng, qiangpengjohnny@yahoo.com
  • Received Date: 14 April 2016
    Revised Date: 27 April 2016
    Accepted Date: 3 May 2016
    Available Online: 27 August 2016

Figures(7)

  • This review paper summarizes the recent progress of highly efficient copolymers with the fluorination strategy for photovoltaic applications. We first present a brief introduction of the fundamental principles of polymer solar cells, and then the functions of fluorine atoms on the polymer donor materials. Finally, we review the research progress of the reported copolymers by classification of the fluorinated acceptor units and donor units, respectively. The resulting structure-property correlations of these copolymers are also discussed which shall certainly facilitate widespread utilization of this strategy for constructing high-performance photovoltaic copolymers in the future.
  • 加载中
    1. [1]

      J.W. Jung, F. Liu, T.P. Russell, W.H. Jo. Medium bandgap conjugated polymer for high performance polymer solar cells exceeding 9% power conversion efficiency[J]. Adv. Mater., 2015,27:7462-7468. doi: 10.1002/adma.201503902

    2. [2]

      Y.Y. Liang, Z. Xu, J.B. Xia. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%[J]. Adv. Mater., 2010,22:E135-E138. doi: 10.1002/adma.200903528

    3. [3]

      M. He, J. Jung, F. Qiu, Z.Q. Lin. Graphene-based transparent flexible electrodes for polymer solar cells[J]. J. Mater. Chem., 2012,22:24254-24264. doi: 10.1039/c2jm33784c

    4. [4]

      J.B. Zhao, Y.K. Li, G.F. Yang. Efficient organic solar cells processed from hydrocarbon solvents[J]. Nat. Energy, 2016,115027. doi: 10.1038/nenergy.2015.27

    5. [5]

      R. Po, G. Bianchi, C. Carbonera, A. Pellegrino. All that glisters is not gold: an analysis of the synthetic complexity of efficient polymer donors for polymer solar cells[J]. Macromolecules, 2015,48:453-461. doi: 10.1021/ma501894w

    6. [6]

      Y.H. Liu, J.B. Zhao, Z.K. Li. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells[J]. Nat. Commun., 2014,55293. doi: 10.1038/ncomms6293

    7. [7]

      H.W. Hu, K. Jiang, G.F. Yang. Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells[J]. J. Am. Chem. Soc., 2015,137:14149-14157. doi: 10.1021/jacs.5b08556

    8. [8]

      Z.C. Hu, K. Zhang, F. Huang, Y. Cao. Water/alcohol soluble conjugated polymers for the interface engineering of highly efficient polymer light-emitting diodes and polymer solar cells[J]. Chem. Commun., 2015,51:5572-5585. doi: 10.1039/C4CC09433F

    9. [9]

      L.Y. Lu, T.Y. Zheng, Q.H. Wu. Recent advances in bulk heterojunction polymer solar cells[J]. Chem. Rev., 2015,115:12666-12731. doi: 10.1021/acs.chemrev.5b00098

    10. [10]

      B.C. Thompson, J.M.J. Fréchet. Polymer-fullerene composite solar cells[J]. Angew. Chem. Int. Ed., 2008,47:58-77. doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Y.J. Cheng, S.H. Yang, C.S. Hsu. Synthesis of conjugated polymers for organic solar cell applications[J]. Chem. Rev., 2009,109:5868-5923. doi: 10.1021/cr900182s

    12. [12]

      L.Y. Lu, L.P. Yu. Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it[J]. Adv. Mater., 2014,26:4413-4430. doi: 10.1002/adma.v26.26

    13. [13]

      W.C. Chen, Z.K. Du, L.L. Han. Efficient polymer solar cells based on a new benzo[J]. Mater. Chem. A, 2015,3:3130-3135. doi: 10.1039/C4TA06350C

    14. [14]

      D.L. Liu, W.C. Zhao, S.Q. Zhang. Highly efficient photovoltaic polymers based on benzodithiophene and quinoxaline with deeper HOMO levels[J]. Macromolecules, 2015,48:5172-5178. doi: 10.1021/acs.macromol.5b00829

    15. [15]

      C.H. Cui, Z.C. He, Y. Wu. High-performance polymer solar cells based on a 2D-conjugated polymer with an alkylthio side-chain[J]. Energy Environ. Sci., 2016,9:885-891. doi: 10.1039/C5EE03684D

    16. [16]

      K. Feng, X.P. Xu, Z.J. Li. Low band gap benzothiophene-thienothiophene copolymers with conjugated alkylthiothieyl and alkoxycarbonyl cyanovinyl side chains for photovoltaic applications[J]. Chem. Commun., 2015,51:6290-6292. doi: 10.1039/C4CC10062J

    17. [17]

      X.P. Xu, Y.L. Wu, J.F. Fang. Side-chain engineering of benzodithiophenefluorinated quinoxaline low-band-gap co-polymers for high-performance polymer solar cells[J]. Chem. Eur. J., 2014,20:13259-13271. doi: 10.1002/chem.201403153

    18. [18]

      H.X. Zhou, L.Q. Yang, A.C. Stuart. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency[J]. Angew. Chem. Int. Ed., 2011,50:2995-2998. doi: 10.1002/anie.201005451

    19. [19]

      B.C. Schroeder, Z.G. Huang, R.S. Ashraf. Silaindacenodithiophene-based low band gap polymers-the effect of fluorine substitution on device performances and film morphologies[J]. Adv. Funct. Mater., 2012,22:1663-1670. doi: 10.1002/adfm.v22.8

    20. [20]

      T.L. Nguyen, H. Choi, S.J. Ko. Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a 300 nm thick conventional single-cell device[J]. Energy Environ. Sci., 2014,7:3040-3051. doi: 10.1039/C4EE01529K

    21. [21]

      Y. Zhang, S.C. Chien, K.S. Chen. Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers[J]. Chem. Commun., 2011,47:11026-11028. doi: 10.1039/c1cc14586j

    22. [22]

      H.Y. Chen, J.H. Hou, S.Q. Zhang. Polymer solar cells with enhanced opencircuit voltage and efficiency[J]. Nat. Photonics, 2009,3:649-653. doi: 10.1038/nphoton.2009.192

    23. [23]

      M.J. Zhang, X. Guo, W. Ma, H. Ade, J.H. Hou. A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance[J]. Adv. Mater, 2015,27:4655-4660. doi: 10.1002/adma.v27.31

    24. [24]

      S.C. Price, A.C. Stuart, L.Q. Yang, H.X. Zhou, W. You. Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer-fullerene solar cells[J]. J. Am. Chem. Soc., 2011,133:4625-4631. doi: 10.1021/ja1112595

    25. [25]

      C.H. Duan, A. Furlan, J.J. van Franeker. Wide-bandgap benzodithiophene-benzothiadiazole copolymers for highly efficient multijunction polymer solar cells[J]. Adv. Mater., 2015,27:4461-4468. doi: 10.1002/adma.v27.30

    26. [26]

      F. Livi, N.K. Zawacka, D. Angmo. Influence of side chain position on the electrical properties of organic solar cells based on dithienylbenzothiadiazole-altphenylene conjugated polymers[J]. Macromolecules, 2015,48:3481-3492. doi: 10.1021/acs.macromol.5b00589

    27. [27]

      Z.P. Fei, P. Boufflet, S. Wood. Influence of backbone fluorination in regioregular poly (3-alkyl-4-fluoro) thiophenes[J]. J. Am. Chem. Soc., 2015,137:6866-6879. doi: 10.1021/jacs.5b02785

    28. [28]

      J.F. Jheng, Y.Y. Lai, J.S. Wu. Influences of the non-covalent interaction strength on reaching high solid-state order and device performance of a low bandgap polymer with axisymmetrical structural units[J]. Adv. Mater., 2013,25:2445-2451. doi: 10.1002/adma.v25.17

    29. [29]

      H.J. Son, W. Wang, T. Xu. Synthesis of fluorinated polythienothiophene-cobenzodithiophenes and effect of fluorination on the photovoltaic properties[J]. J. Am. Chem. Soc., 2011,133:1885-1894. doi: 10.1021/ja108601g

    30. [30]

      Q. Peng, X.J. Liu, D. Su. Novel benzo[J]. Adv. Mater., 2011,23:4554-4558. doi: 10.1002/adma.201101933

    31. [31]

      A.C. Stuart, J.R. Tumbleston, H.X. Zhou. Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells[J]. J. Am. Chem. Soc., 2013,135:1806-1815. doi: 10.1021/ja309289u

    32. [32]

      N. Wang, Z. Chen, W. Wei, Z.H. Jiang. Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments[J]. J. Am. Chem. Soc., 2013,135:17060-17068. doi: 10.1021/ja409881g

    33. [33]

      S. Albrecht, S. Janietz, W. Schindler. Fluorinated copolymer PCPDTBT with enhanced open-circuit voltage and reduced recombination for highly efficient polymer solar cells[J]. J. Am. Chem. Soc., 2012,134:14932-14944. doi: 10.1021/ja305039j

    34. [34]

      S. Guo, J. Ning, V. Kö rstgens. The effect of fluorination in manipulating the nanomorphology in PTB7:PC71BM bulk heterojunction systems[J]. Adv. Energy Mater., 2015,51401315. doi: 10.1002/aenm.201401315

    35. [35]

      Z. Li, J.P. Lu, S.C. Tse. Synthesis and applications of difluorobenzothiadiazole based conjugated polymers for organic photovoltaics[J]. J. Mater. Chem., 2011,21:3226-3233. doi: 10.1039/c0jm04166a

    36. [36]

      Y.Y. Liang, Y. Wu, D.Q. Feng. Development of new semiconducting polymers for high performance solar cells[J]. J. Am. Chem. Soc., 2009,131:56-57. doi: 10.1021/ja808373p

    37. [37]

      Y.Y. Liang, D.Q. Feng, Y. Wu. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties[J]. J. Am. Chem. Soc., 2009,131:7792-7799. doi: 10.1021/ja901545q

    38. [38]

      H.Q. Zhou, Y. Zhang, J. Seifter. High-efficiency polymer solar cells enhanced by solvent treatment[J]. Adv. Mater., 2013,25:1646-1652. doi: 10.1002/adma.201204306

    39. [39]

      Z.C. He, C.M. Zhong, S.J. Su. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat. Photonics, 2012,6:591-595.  

    40. [40]

      X.H. Ouyang, R.X. Peng, L. Ai, X.Y. Zhang, Z.Y. Ge. Efficient polymer solar cells employing a non-conjugated small-molecule electrolyte[J]. Nat. Photonics, 2015,9:520-524. doi: 10.1038/nphoton.2015.126

    41. [41]

      S.H. Liao, H.J. Jhuo, Y.S. Cheng, S.A. Chen. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with lowbandgap polymer (PTB7-Th) for high performance[J]. Adv. Mater., 2013,25:4766-4771. doi: 10.1002/adma.v25.34

    42. [42]

      J. Huang, J.H. Carpenter, C.Z. Li, J.S. Yu, H. Ade. Highly efficient organic solar cells with improved vertical donor-acceptor compositional gradient via an inverted off-center spinning method[J]. Adv. Mater., 2016,28:967-974. doi: 10.1002/adma.v28.5

    43. [43]

      C.H. Cui, W.Y. Wong, Y.F. Li. Improvement of open-circuit voltage and photovoltaic properties of 2D-conjugated polymers by alkylthio substitution[J]. Energy Environ. Sci., 2014,7:2276-2284. doi: 10.1039/C4EE00446A

    44. [44]

      L. Ye, S.Q. Zhang, W.C. Zhao, H.F. Yao, J.H. Hou. Highly efficient 2D-conjugated benzodithiophene-based photovoltaic polymer with linear alkylthio side chain[J]. Chem. Mater., 2014,26:3603-3605. doi: 10.1021/cm501513n

    45. [45]

      H.F. Yao, W.C. Zhao, Z. Zheng. PBDT-TSR: a highly efficient conjugated polymer for polymer solar cells with a regioregular structure[J]. J. Mater. Chem. A, 2016,4:1708-1713. doi: 10.1039/C5TA08614K

    46. [46]

      S.Q. Zhang, L. Ye, W.C. Zhao. Side chain selection for designing highly efficient photovoltaic polymers with 2D-conjugated structure[J]. Macromolecules, 2014,47:4653-4659. doi: 10.1021/ma500829r

    47. [47]

      M.J. Zhang, X. Guo, S.Q. Zhang, J.H. Hou. Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers[J]. Adv. Mater., 2014,26:1118-1123. doi: 10.1002/adma.201304427

    48. [48]

      M.J. Zhang, X. Guo, W. Ma. An easy and effective method to modulate molecular energy level of the polymer based on benzodithiophene for the application in polymer solar cells[J]. Adv. Mater., 2014,26:2089-2095. doi: 10.1002/adma.201304631

    49. [49]

      L.J. Huo, L. Ye, Y. Wu. Conjugated and nonconjugated substitution effect on photovoltaic properties of benzodifuran-based photovoltaic polymers[J]. Macromolecules, 2012,45:6923-6929. doi: 10.1021/ma301254x

    50. [50]

      P.S. Huang, J. Du, S.S. Gunathilake. Benzodifuran and benzodithiophene donor-acceptor polymers for bulk heterojunction solar cells[J]. J. Mater. Chem. A, 2015,3:6980-6989. doi: 10.1039/C5TA00936G

    51. [51]

      H.J. Son, L.Y. Lu, W. Chen. Synthesis and photovoltaic effect in dithieno[J]. Adv. Mater., 2013,25:838-843. doi: 10.1002/adma.v25.6

    52. [52]

      D. Mühlbacher, M. Scharber, M. Morana. High photovoltaic performance of a low-bandgap polymer[J]. Adv. Mater., 2006,18:2884-2889. doi: 10.1002/(ISSN)1521-4095

    53. [53]

      Y.X. Li, J.Y. Zou, H.L. Yip. Side-chain effect on cyclopentadithiophene/ fluorobenzothiadiazole-based low band gap polymers and their applications for polymer solar cells[J]. Macromolecules, 2013,46:5497-5503. doi: 10.1021/ma4009302

    54. [54]

      H. Medlej, A. Nourdine, H. Awada. Fluorinated benzothiadiazole-based low band gap copolymers to enhance open-circuit voltage and efficiency of polymer solar cells[J]. Eur. Polym. J., 2014,59:25-35. doi: 10.1016/j.eurpolymj.2014.07.006

    55. [55]

      C.P. Yau, Z.P. Fei, R.S. Ashraf. Influence of the electron deficient co-monomer on the optoelectronic properties and photovoltaic performance of dithienogermole-based co-polymers[J]. Adv. Funct. Mater., 2014,24:678-687. doi: 10.1002/adfm.201302270

    56. [56]

      X.P. Xu, K. Li, Z.J. Li. The enhanced performance of fluorinated quinoxalinecontaining polymers by replacing carbon with silicon bridging atoms on the dithiophene donor skeleton[J]. Polym. Chem., 2015,6:2337-2347. doi: 10.1039/C4PY01622J

    57. [57]

      L.T. Dou, C.C. Chen, K. Yoshimura. Synthesis of 5H-dithieno[J]. Macromolecules, 2013,46:3384-3390. doi: 10.1021/ma400452j

    58. [58]

      J. Lee, S.B. Jo, M. Kim. Donor-acceptor alternating copolymer nanowires for highly efficient organic solar cells[J]. Adv. Mater., 2014,26:6706-6714. doi: 10.1002/adma.v26.39

    59. [59]

      T.S. Qin, W. Zajaczkowski, W. Pisula. Tailored donor-acceptor polymers with an A-D1-A-D2 structure: controlling intermolecular interactions to enable enhanced polymer photovoltaic devices[J]. J. Am. Chem. Soc., 2014,136:6049-6055. doi: 10.1021/ja500935d

    60. [60]

      X.C. Wang, Z.G. Zhang, H. Luo. Effects of fluorination on the properties of thieno[J]. Polym. Chem., 2014,5:502-511. doi: 10.1039/C3PY00940H

    61. [61]

      P. Shen, H.J. Bin, L. Xiao, Y.F. Li. Enhancing photovoltaic performance of copolymers containing thiophene unit with D-A conjugated side chain by rational molecular design[J]. Macromolecules, 2013,46:9575-9586. doi: 10.1021/ma401886a

    62. [62]

      Y.S. Huang, F. Wu, M. Zhang. Synthesis and photovoltaic properties of conjugated polymers with an asymmetric 4-(2-ethylhexyloxy)-8-(2-ethylhexylthio)benzo[J]. Dyes Pigments, 2015,115:58-66. doi: 10.1016/j.dyepig.2014.12.012

    63. [63]

      Z.H. Chen, P. Cai, J.W. Chen. Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thickfilm polymer solar cells[J]. Adv. Mater., 2014,26:2586-2591. doi: 10.1002/adma.v26.16

    64. [64]

      W. Ma, G.F. Yang, K. Jiang. Influence of processing parameters and molecular weight on the morphology and properties of high-performance PffBT4T-2OD:PC71BM organic solar cells, Adv. Energy Mater., 2015, 5:[J]. Adv. Energy Mater, 2015,5.  

    65. [65]

      M.A. Uddin, T.H. Lee, S.H. Xu. Interplay of intramolecular noncovalent coulomb interactions for semicrystalline photovoltaic polymers[J]. Chem. Mater., 2015,27:5997-6007. doi: 10.1021/acs.chemmater.5b02251

    66. [66]

      J. Lee, M. Jang, S.M. Lee. Fluorinated benzothiadiazole (BT) groups as a powerful unit for high-performance electron-transporting polymers[J]. ACS Appl. Mater. Interfaces, 2014,6:20390-20399. doi: 10.1021/am505925w

    67. [67]

      H. Bronstein, J.M. Frost, A. Hadipour. Effect of fluorination on the properties ofa donor-acceptor copolymer for use in photovoltaic cells and transistors[J]. Chem. Mater., 2013,25:277-285. doi: 10.1021/cm301910t

    68. [68]

      J.J. Intemann, K. Yao, H.L. Yip. Molecular weight effect on the absorption, charge carrier mobility, and photovoltaic performance of an indacenodiselenophene-based ladder-type polymer[J]. Chem. Mater., 2013,25:3188-3195. doi: 10.1021/cm401586t

    69. [69]

      E. Wang, L.T. Hou, Z.Q. Wang. An easily synthesized blue polymer for highperformance polymer solar cells[J]. Adv. Mater., 2010,22:5240-5244. doi: 10.1002/adma.201002225

    70. [70]

      W.L. Zhuang, H.Y. Zhen, R. Kroon. Molecular orbital energy level modulation through incorporation of selenium and fluorine into conjugated polymers for organic photovoltaic cells[J]. J. Mater. Chem. A, 2013,1:13422-13425. doi: 10.1039/c3ta13040a

    71. [71]

      H.C. Chen, Y.H. Chen, C.C. Liu. Prominent short-circuit currents of fluorinated quinoxaline-based copolymer solar cells with a power conversion efficiency of 8.0%[J]. Chem. Mater., 2012,24:4766-4772. doi: 10.1021/cm302861s

    72. [72]

      Q. Tao, Y.X. Xia, X.F. Xu. D-A1-D-A2 copolymers with extended donor segments for efficient polymer solar cells[J]. Macromolecules, 2015,48:1009-1016. doi: 10.1021/ma502186g

    73. [73]

      W.T. Li, S. Albrecht, L.Q. Yang. Mobility-controlled performance of thick solar cells based on fluorinated copolymers[J]. J. Am. Chem. Soc., 2014,136:15566-15576. doi: 10.1021/ja5067724

    74. [74]

      K. Li, Z.J. Li, K. Feng. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells[J]. J. Am. Chem. Soc., 2013,135:13549-13557. doi: 10.1021/ja406220a

    75. [75]

      R.L. Uy, L. Yan, W.T. Li, W. You. Tuning fluorinated benzotriazole polymers through alkylthio substitution and selenophene incorporation for bulk heterojunction solar cells[J]. Macromolecules, 2014,47:2289-2295. doi: 10.1021/ma5001095

    76. [76]

      Y.C. Yang, R.M. Wu, X. Wang. Isoindigo fluorination to enhance photovoltaic performance of donor-acceptor conjugated copolymers[J]. Chem. Commun., 2014,50:439-441. doi: 10.1039/C3CC47677D

    77. [77]

      Z.G. Wang, J. Zhao, Y. Li, Q. Peng. Low band-gap copolymers derived from fluorinated isoindigo and dithienosilole: synthesis, properties and photovoltaic applications[J]. Polym. Chem., 2014,5:4984-4992. doi: 10.1039/C4PY00273C

    78. [78]

      Y.F. Deng, J. Liu, J.T. Wang. Dithienocarbazole and isoindigo based amorphous low bandgap conjugated polymers for efficient polymer solar cells[J]. Adv. Mater., 2014,26:471-476. doi: 10.1002/adma.201303586

    79. [79]

      M. Tomassetti, F. Ouhib, A. Wislez. Low bandgap copolymers based on monofluorinated isoindigo towards efficient polymer solar cells[J]. Polym. Chem., 2015,6:6040-6049. doi: 10.1039/C5PY00693G

    80. [80]

      J. Yuan, Y.P. Zou, R.L. Cui. Incorporation of fluorine onto different positions of phenyl substituted benzo[J]. Macromolecules, 2015,48:4347-4356. doi: 10.1021/acs.macromol.5b00564

    81. [81]

      G.W. Li, X. Gong, J.C. Zhang. 4-Alkyl-3, 5-difluorophenyl-substituted benzodithiophene-based wide band gap polymers for high-efficiency polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2016,8:3686-3692. doi: 10.1021/acsami.5b08769

    82. [82]

      J.W. Jo, J.W. Jung, E.H. Jung. Fluorination on both D and A units in D-A type conjugated copolymers based on difluorobithiophene and benzothiadiazole for highly efficient polymer solar cells[J]. Energy Environ. Sci., 2015,8:2427-2434. doi: 10.1039/C5EE00855G

    83. [83]

      Z.K. Li, H.R. Lin, K. Jiang. Dramatic performance enhancement for large bandgap thick-film polymer solar cells introduced by a difluorinated donor unit[J]. Nano Energy, 2015,15:607-615. doi: 10.1016/j.nanoen.2015.05.016

    84. [84]

      S.S. Chen, K.C. Lee, Z.G. Zhang. An indacenodithiophene-quinoxaline polymer prepared by direct arylation polymerization for organic photovoltaics[J]. Macromolecules, 2016,49:527-536. doi: 10.1021/acs.macromol.5b02324

  • 加载中
    1. [1]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    2. [2]

      Jinge ZhuAiling TangLeyi TangPeiqing CongChao LiQing GuoZongtao WangXiaoru XuJiang WuErjun Zhou . Chlorination of benzyl group on the terminal unit of A2-A1-D-A1-A2 type nonfullerene acceptor for high-voltage organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110233-. doi: 10.1016/j.cclet.2024.110233

    3. [3]

      Bo YuPengchen DuJianwen GuoHanshen XinJianhua Zhang . Nonalternant isomer of pentacene fusing two azulene units. Chinese Chemical Letters, 2024, 35(5): 109321-. doi: 10.1016/j.cclet.2023.109321

    4. [4]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463

    5. [5]

      Feng WuXuemin KongYixuan LiuShuli WangZhong ChenXu Hou . Microfluidic-based isolation of circulating tumor cells with high-efficiency and high-purity. Chinese Chemical Letters, 2024, 35(8): 109754-. doi: 10.1016/j.cclet.2024.109754

    6. [6]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    7. [7]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    8. [8]

      Rong-Nan YiWei-Min He . Electron donor-acceptor complex enabled arylation of dithiocarbamate anions with thianthrenium salts under aqueous micellar conditions. Chinese Chemical Letters, 2024, 35(11): 110194-. doi: 10.1016/j.cclet.2024.110194

    9. [9]

      Zhiyang ZhangYi ChenYingnan ZhangChuanlang Zhan . Deuterated chloroform replaces ultra-dry chloroform to achieve high-efficient organic solar cells. Chinese Chemical Letters, 2025, 36(1): 110083-. doi: 10.1016/j.cclet.2024.110083

    10. [10]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    11. [11]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    12. [12]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

    13. [13]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    14. [14]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    15. [15]

      Changzhu HuangWei DaiShimao DengYixin TianXiaolin LiuJia LinHong Chen . A self-cleaning window for high-efficiency photodegradation of indoor formaldehyde. Chinese Chemical Letters, 2024, 35(9): 109429-. doi: 10.1016/j.cclet.2023.109429

    16. [16]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    17. [17]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    18. [18]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    19. [19]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

    20. [20]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

Metrics
  • PDF Downloads(9)
  • Abstract views(720)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return