Citation: Jian-Chang Gui, Zhi-Qiang Yan, Yuan Peng, Ji-Gao Yi, Da-Yang Zhou, Dan Su, Zhi-Hui Zhong, Guo-Wei Gao, Wan-Hua Wu, Cheng Yang. Enhanced head-to-head photodimers in the photocyclodimerization of anthracenecarboxylic acid with a cationic pillar[6]arene[J]. Chinese Chemical Letters, ;2016, 27(7): 1017-1021. doi: 10.1016/j.cclet.2016.04.021 shu

Enhanced head-to-head photodimers in the photocyclodimerization of anthracenecarboxylic acid with a cationic pillar[6]arene

  • Corresponding author: Cheng Yang, yangchengyc@scu.edu.cn
  • Received Date: 21 March 2016
    Revised Date: 7 April 2016
    Accepted Date: 14 April 2016
    Available Online: 11 July 2016

Figures(6)

  • The complexation behaviors of anthracenecarboxylic acid and water-soluble cationic pillararenes have been investigated by 1H NMR, UV-vis and ITC methods. The cationic pillar[6]arene was found to stepwise form 1:1 and 1:2 complexes, having a large K1 and a relatively small K2 values. Photocyclodimerization of AC within the pillar[6]arene improved the yield of the head-to-head photodimers. Up to 4.97 HH/HT ratio has been reached by optimizing the reaction conditions.
  • 加载中
    1. [1]

      N.J. Turro, V. Ramamurthy, J.C. Scaiano. Principles of molecular photochemistry: an introduction. University science books., 2009.

    2. [2]

      C. Xiao, W.Y. Zhao, D.Y. Zhou. , Recent advance of photochromic diarylethenescontaining supramolecular systems[J]. Chin. Chem. Lett., 2015,26:817-824. doi: 10.1016/j.cclet.2015.05.013

    3. [3]

      Z. Yan, W. Wu, C. Yang, Y. Inoue. Catalytic supramolecular photochirogenesis[J]. Supramolecular Catalysis,, 2015,2:9-24.  

    4. [4]

      D.G. Amirsakis, M.A. Garcia-Garibay, S.J. Rowan, J.F. Stoddart, A.J.P. White, D.J. Williams.. Host-guest chemistry aids and abets a stereospecific photodimerization in the solid state[J]. Angew. Chem. Int. Ed.,, 2001,40:4256-4261. doi: 10.1002/1521-3773(20011119)40:22<>1.0.CO;2-D

    5. [5]

      A. Nakamura, Y. Inoue. Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin[J]. J. Am. Chem. Soc., 2003,125:966-972. doi: 10.1021/ja016238k

    6. [6]

      D. Zhao, Y. Chen, Y. Liu. Comparative studies on molecular induced aggregation of hepta-imidazoliumyl-b-cyclodextrin towards anionic surfactants[J]. Chin. Chem. Lett.,, 2015,26:829-833. doi: 10.1016/j.cclet.2014.11.028

    7. [7]

      K.S. Rao, S.M. Hubig, J.N. Moorthy, J .K. Kochi. Stereoselective photodimerization of (E)-stilbenes in crystalline g-cyclodextrin inclusion complexes[J]. J. Org. Chem.,, 1999,64:8098-8104. doi: 10.1021/jo9903149

    8. [8]

      M. Yoshizawa, Y. Takeyama, T. Kusukawa, M. Fujita. Cavity-directed, highly stereoselective [2 + 2] photodimerization of olefins within self-assembled coordination cages[J]. Angew. Chem. Int. Ed., 2002,41:1347-1349. doi: 10.1002/1521-3773(20020415)41:8<>1.0.CO;2-M

    9. [9]

      M. Yoshizawa, Y. Takeyama, T. Okano, M. Fujita. Cavity-directed synthesis within a self-assembled coordination cage: highly selective [2 +, 2] cross-photodimerization of olefins[J]. J. Am. Chem. Soc.,, 2003,125:3243-3247. doi: 10.1021/ja020718+

    10. [10]

      L. Lei, L. Luo, X. Wu. Cucurbit[8]uril-mediated photodimerization of alkyl, 2-naphthoate in aqueous solution[J]. Tetrahedron Lett., 2008,49:1502-1505. doi: 10.1016/j.tetlet.2007.12.114

    11. [11]

      M.V. Maddipatla, L.S. Kaanumalle, A. Natarajan, M. Pattabiraman, V. Ramamurthy. Preorientation of olefins toward a single photodimer: cucurbituril-mediated photodimerization of protonated azastilbenes in water[J]. Langmuir,, 2007,23:7545-7554. doi: 10.1021/la700803k

    12. [12]

      R. Wang, L. Yuan, D.H. Macartney. Cucurbit[7]uril mediates the stereoselective [4 + 4] photodimerization of 2-aminopyridine hydrochloride in aqueous solution[J]. J. Org. Chem., 2006,71:1237-1239. doi: 10.1021/jo052136r

    13. [13]

      D.M. Bassani, V. Darcos, S. Mahony, J.P. Desvergne. Desvergne. Supramolecular catalysis of olefin [2 +, 2] photodimerization[J]. J. Am. Chem. Soc.,, 2000,122:8795-8796. doi: 10.1021/ja002089e

    14. [14]

      T. Wada, M. Nishijima, T. Fujisawa. Bovine serum albumin-mediated enantiodifferentiating photocyclodimerization of, 2-anthracenecarboxylate[J]. J. Am. Chem. Soc., 2003,125:7492-7493. doi: 10.1021/ja034641g

    15. [15]

      T. Ogoshi, S. Kanai, S. Fujinami, T.A. Yamagishi, Y. Nakamoto. para-Bridged symmetrical pillar [5] arenes: their Lewis acid catalyzed synthesis and host-guest property[J]. J. Am. Chem. Soc., 2008,130:5022-5023. doi: 10.1021/ja711260m

    16. [16]

      M. Xue, Y. Yang, X. Chi, Z. Zhang, F. Huang. Pillararenes, a new class of macrocycles for supramolecular chemistry[J]. Acc. Chem. Res., 2012,45:1294-1308. doi: 10.1021/ar2003418

    17. [17]

      Y. Cao, X.Y. Hu, Y. Li. Multistimuli-responsive supramolecular vesicles based on water-soluble pillar[6]arene and SAINT complexation for controllable drug release[J]. J. Am. Chem. Soc., 2014,136:10762-10769. doi: 10.1021/ja505344t

    18. [18]

      W. Chen, Y. Zhang, J. Li. Synthesis of a cationic water-soluble pillar[6]arene and its effective complexation towards naphthalenesulfonate guests[J]. Chem. Commun., 2013,49:7956-7958. doi: 10.1039/c3cc44328k

    19. [19]

      C.L. Sun, J.F. Xu, Y.Z. Chen. Monofunctionalized pillar [5] arene-based stable [1] pseudorotaxane[J]. Chin. Chem. Lett., 2015,26:843-846. doi: 10.1016/j.cclet.2015.05.030

    20. [20]

      C. Li, K. Han, J. Li. Supramolecular polymers based on efficient pillar[5]areneneutral guest motifs.[J]. Chem. Eur. J., 2013,19:11892-11897. doi: 10.1002/chem.201301022

    21. [21]

      S.H. Li, H.Y. Zhang, X. Xu, Y. Liu. Mechanically selflocked chiral gemini-catenanes, Nat. Commun., 2015, 6:http://dx.doi.org/10.1038/ncomms8590.

    22. [22]

      D. Cao, Y. Kou, J. Liang. A facile and efficient preparation of pillararenes and a pillarquinone[J]. Angew. Chem. Int. Ed., 2009,48:9721-9723. doi: 10.1002/anie.200904765

    23. [23]

      X.B. Hu, Z. Chen, L. Chen. Pillar[n]arenes (n = 8-10) with two cavities: synthesis, structures and complexing properties[J]. Chem. Commun., 2012,48:10999-11001. doi: 10.1039/c2cc36027f

    24. [24]

      T. Ogoshi, N. Ueshima, F. Sakakibara, T.A. Yamagishi, T. Haino. Conversion from pillar[5]arene to pillar[6-15]arenes by ring expansion and encapsulation of C60 by pillar[n]arenes with nanosize cavities[J]. Org. Lett., 2014,16:2896-2899. doi: 10.1021/ol501039u

    25. [25]

      G. Yu, Y. Ma, C. Han. A sugar-functionalized amphiphilic pillar[5]arene: synthesis, self-assembly in water, and application in bacterial cell agglutination[J]. J. Am. Chem. Soc., 2013,135:10310-10313. doi: 10.1021/ja405237q

    26. [26]

      J. Fan, H. Deng, J. Li, X. Jia, C. Li. Charge-transfer inclusion complex formation of tropylium cation with pillar[6]arenes[J]. Chem. Commun., 2013,49:6343-6345. doi: 10.1039/c3cc42506a

    27. [27]

      C. Ke, C. Yang, T. Mori. Catalytic enantiodifferentiating photocyclodimerization of, 2-anthracenecarboxylic acid mediated by a non-sensitizing chiral metallosupramolecular host[J]. Angew. Chem. Int. Ed., 2009,48:6675-6677. doi: 10.1002/anie.v48:36

    28. [28]

      Q. Wang, C. Yang, C. Ke. Wavelength-controlled supramolecular photocyclodimerization of anthracenecarboxylate mediated by γ-cyclodextrins[J]. Chem. Commun., 2011,47:6849-6851. doi: 10.1039/c1cc11771h

    29. [29]

      C. Yang, C. Ke, W. Liang. Dual supramolecular photochirogenesis: ultimate stereocontrol of photocyclodimerization by a chiral scaffold and confining hos[J]. J. Am. Chem. Soc., 2011,133:13786-13789. doi: 10.1021/ja202020x

    30. [30]

      C. Yang, T. Mori, Y. Origane. Highly stereoselective photocyclodimerization of α-cyclodextrin-appended anthracene mediated by γ-cyclodextrin and cucurbit[8]uril: a dramatic steric effect operating outside the binding site[J]. J. Am. Chem. Soc., 2008,130:8574-8575. doi: 10.1021/ja8032923

    31. [31]

      J. Yao, Z. Yan, J. Ji. Ammonia-driven chirality inversion and enhancement in enantiodifferentiating photocyclodimerization of, 2-anthracenecarboxylate mediated by diguanidino-γ-cyclodextrin[J]. J. Am. Chem. Soc., 2014,136:6916-6919. doi: 10.1021/ja5032908

    32. [32]

      M. Nishijima, H. Tanaka, G. Fukuhara. Supramolecular photochirogenesis with functional amyloid superstructures: product chirality switching by chiral variants of insulin fibrils upon enantiodifferentiating photocyclodimerization of, 2-anthracenecarboxylate[J]. Chem. Commun., 2013,49:8916-8918. doi: 10.1039/c3cc44235g

    33. [33]

      Y. Kawanami, S.Y. Katsumata, J.I. Mizoguchi. Enantiodifferentiating photocyclodimerization of, 2-anthracenecarboxylic acid via competitive binary/ternary hydrogen-bonded complexes with 4-benzamidoprolinol[J]. Org. Lett., 2012,14:4962-4965. doi: 10.1021/ol3023402

    34. [34]

      Y. Kawanami, H. Umehara, J.I. Mizoguchi. Cross-versus homo-photocyclodimerization of anthracene and, 2-anthracenecarboxylic acid mediated by chiral hydrogen-bonding template. Factors controlling the cross/homo- and enantioselectivities[J]. J. Org. Chem., 2013,78:3073-3085. doi: 10.1021/jo302818w

    35. [35]

      M. Alagesan, K. Kanagaraj, S. Wan, et al., Enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate mediated by a self-assembled iron tetrahedral coordination cage, J. Photochem. Photobio. A: Chem. (2016), http://dx.doi.org/10.1016/j.jphotochem.2015.10.023.

    36. [36]

      C. Yang, T. Mori, Y. Inoue. Supramolecular enantiodifferentiating photocyclodimerization of, 2-anthracenecarboxylate mediated by capped γ-cyclodextrins: critical control of enantioselectivity by cap rigidity[J]. J. Org. Chem.,, 2008,73:5786-5794. doi: 10.1021/jo800533y

    37. [37]

      C. Yang, A. Nakamura, T. Wada, Y. Inoue. Enantiodifferentiating photocyclodimerization of, 2-anthracenecarboxylic acid mediated by γ-cyclodextrins with a flexible or rigid cap[J]. Org. Lett.,, 2006,8:3005-3008. doi: 10.1021/ol061004x

    38. [38]

      C. Yang, A. Nakamura, G. Fukuhara. Pressure and temperature-controlled enantiodifferentiating [4 +, 4]-photocyclodimerization of 2-anthracenecarboxylate mediated by secondary face- and skeleton-modified γ-cyclodextrins[J]. J. Org. Chem., 2006,71:3126-3136. doi: 10.1021/jo0601718

    39. [39]

      R. Joseph, A. Naugolny, M. Feldman. Cationic pillararenes potently inhibit biofilm formation without affecting bacterial growth and viability[J]. J. Am. Chem. Soc., 2016,138:754-757. doi: 10.1021/jacs.5b11834

    40. [40]

      M. Sakamoto. Absolute asymmetric photochemistry using spontaneous chiral crystallization[J]. Mol. Supramol. Photochem.,, 2004,11:415-461.  

    41. [41]

      G. Yu, J. Zhou, J. Shen, G. Tang, F. Huang. Cationic pillar [6] arene/ATP host-guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment, Chem. Sci. (2016). http://dx.doi.org/10.1039/C6SC00531D.

  • 加载中
    1. [1]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    2. [2]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    3. [3]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    4. [4]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    5. [5]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    6. [6]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    7. [7]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    8. [8]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    9. [9]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    10. [10]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    11. [11]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    12. [12]

      Chao ZhangAi-Feng LiuShihui LiFang-Yuan ChenJun-Tao ZhangFang-Xing ZengHui-Chuan FengPing WangWen-Chao GengChuan-Rui MaDong-Sheng Guo . A supramolecular formulation of icariin@sulfonatoazocalixarene for hypoxia-targeted osteoarthritis therapy. Chinese Chemical Letters, 2025, 36(1): 109752-. doi: 10.1016/j.cclet.2024.109752

    13. [13]

      Jie YangXin-Yue LouDihua DaiJingwei ShiYing-Wei Yang . Desymmetrized pillar[8]arenes: High-yield synthesis, functionalization, and host-guest chemistry. Chinese Chemical Letters, 2025, 36(1): 109818-. doi: 10.1016/j.cclet.2024.109818

    14. [14]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    15. [15]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    16. [16]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    17. [17]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    18. [18]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    19. [19]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    20. [20]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

Metrics
  • PDF Downloads(0)
  • Abstract views(720)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return