Citation: Liu Zhe-Ming, Peng Lan, Tang Ai-Wei. Fluoride-assisted synthesis of anatase TiO2 nanocrystals with tunable shape and band gap via a solvothermal approach[J]. Chinese Chemical Letters, ;2016, 27(12): 1801-1804. doi: 10.1016/j.cclet.2016.04.016 shu

Fluoride-assisted synthesis of anatase TiO2 nanocrystals with tunable shape and band gap via a solvothermal approach

  • Corresponding author: Tang Ai-Wei, awtang@bjtu.edu.cn
  • Received Date: 16 March 2016
    Revised Date: 5 April 2016
    Accepted Date: 14 April 2016
    Available Online: 23 December 2016

Figures(5)

  • A simple solvothermal approach employing oleic acid has been developed to prepare anatase TiO2 nanocrystals with different shapes, which were tuned from nanorods to nano-ellipsoids by increasing the amount of NaF from 0 to 0.5 mmol, and the optical band gap decreased from 3.47 eV to 3.29 eV accordingly. However, when the fluoride was changed to NH4F, the resultant TiO2 nanocrystals possessed an anatase phase but weremade up of smaller-sized nanocrystals and nanorods, and the band gap was increased to 3.53 eV. The X-ray photoelectron spectroscopy (XPS) results illustrated an increase of fluorine content with an increasing amount of NaF could account for the variation of the shape and optical band gap of TiO2 nanocrystals. Moreover, the absence of fluorine content brought about less change of shape and increase of optical band gap of the product synthesized in the presence of NH4F. This result may offer another way to alter the shape and band gap of metal oxide nanocrystals with the assistance of fluoride.
  • 加载中
    1. [1]

      Y.D. Liu, A.W. Tang, Q. Zhang, Y.D. Yin. Seed-mediated growth of anatase TiO2 nanocrystals with core-antenna structures for enhanced photocatalytic activity[J]. J. Am. Chem. Soc., 2015,137:11327-11339. doi: 10.1021/jacs.5b04676

    2. [2]

      S.B. Wang, L. Pan, J.J. Song. Titanium-defected undoped anatase TiO2 with ptype conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance[J]. J. Am. Chem. Soc., 2015,137:2975-2983. doi: 10.1021/ja512047k

    3. [3]

      M. Dahl, Y.D. Liu, Y.D. Yin. Composite titanium dioxide nanomaterials[J]. Chem. Rev., 2014,114:9853-9889. doi: 10.1021/cr400634p

    4. [4]

      H.Y. Liu, J.B. Joo, M. Dahl. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity[J]. Energy Environ. Sci., 2015,8:286-296. doi: 10.1039/C4EE02618G

    5. [5]

      H. Wang, B.L. Wang, S.Y. Ma. Synthesis of visible-light-driven TiO2 yolk-shell spheres with {001} facets dominated mesoporous shells[J]. Chin. Chem. Lett., 2013,24:260-263. doi: 10.1016/j.cclet.2013.01.046

    6. [6]

      W.S. Wang, Q.N. Sa, J.H. Chen. Porous TiO2/C nanocomposite shells as a highperformance anode material for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2013,5:6478-6483. doi: 10.1021/am402350n

    7. [7]

      R. Liu, P. Wang, X.F. Wang, H.G. Yu, J.G. Yu. UV- and visible-light photocatalytic activity of simultaneously deposited and doped Ag/Ag(I)-TiO2 photocatalyst[J]. J. Phys. Chem. C, 2012,116:17721-17728. doi: 10.1021/jp305774n

    8. [8]

      H.G. Yu, W.Y. Chen, X.F. Wang, Y. Xu, J.G. Yu. Enhanced photocatalytic activity and photoinduced stability of Ag-based photocatalysts:the synergistic action of amorphous-Ti(IV) and Fe(Ⅲ) cocatalysts[J]. Appl. Catal. B:Environ., 2016,187:163-170. doi: 10.1016/j.apcatb.2016.01.011

    9. [9]

      X.F. Wang, K. Wang, K.W. Feng. Greatly enhanced photocatalytic activity of TiO2-xNx by a simple surface modification of Fe(Ⅲ) cocatalyst[J]. J. Mol. Catal. A:Chem., 2014,391:92-98. doi: 10.1016/j.molcata.2014.04.015

    10. [10]

      Q.L. Xu, J.G. Yu, J. Zhang, J.F. Zhang, G. Liu. Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity[J]. Chem. Commun., 2015,51:7950-7953.  

    11. [11]

      J.B. Joo, M. Dahl, N. Li, F. Zaera, Y.D. Yin. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications[J]. Energy Environ. Sci., 2013,6:2082-2092. doi: 10.1039/c3ee41155a

    12. [12]

      S. Yang, N. Huang, Y.M. Jin. Crystal shape engineering of anatase TiO2 and its biomedical applications[J]. CrystEngComm, 2015,17:6617-6631. doi: 10.1039/C5CE00804B

    13. [13]

      M. Cargnello, T.R. Gordon, C.B. Murray. Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals[J]. Chem. Rev., 2014,114:9319-9345. doi: 10.1021/cr500170p

    14. [14]

      Z.L. Cheng, S. Han. Preparation of a novel composite electrode based on N-doped TiO2-coated NaY zeolite membrane and its photoelectrocatalytic performance[J]. Chin. Chem. Lett., 2016,27:467-470. doi: 10.1016/j.cclet.2015.12.010

    15. [15]

      L. Qian, Z.S. Jin, S.Y. Yang, Z.L. Du, X.R. Xu. Bright visible photoluminescence from nanotube titania grown by soft chemical process[J]. Chem. Mater., 2005,17:5334-5338. doi: 10.1021/cm050851b

    16. [16]

      T.R. Gordon, M. Cargnello, T. Paik. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity[J]. J. Am. Chem. Soc., 2012,134:6751-6761. doi: 10.1021/ja300823a

    17. [17]

      C.T. Dinh, T.D. Nguyen, F. Kleitz, T.O. Do. Shape-controlled synthesis of highly crystalline titania nanocrystals[J]. ACS Nano, 2009,3:3737-3743. doi: 10.1021/nn900940p

    18. [18]

      W.F. Yan, B. Chen, S.M. Mahurin, S. Dai, S.H. Overbury. Brookite-supported highly stable gold catalytic system for CO oxidation[J]. Chem. Commun., 2004:1918-1919.  

    19. [19]

      H.G. Yang, C.H. Sun, S.Z. Qiao. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008,453:638-641. doi: 10.1038/nature06964

    20. [20]

      J. Joo, S.G. Kwon, T. Yu. Large-scale synthesis of TiO2 nanorods via nonhydrolytic Sol-Gel ester elimination reaction and their application to photocatalytic inactivation of E. coli[J]. J. Phys. Chem. B, 2005,109:15297-15302. doi: 10.1021/jp052458z

    21. [21]

      S. Kalathil, M.M. Khan, S.A. Ansari, J. Lee, M.H. Cho. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity[J]. Nanoscale, 2013,5:6323-6326. doi: 10.1039/c3nr01280h

    22. [22]

      X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011,331:746-750. doi: 10.1126/science.1200448

  • 加载中
    1. [1]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    2. [2]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    3. [3]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    4. [4]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    7. [7]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    8. [8]

      Qi LiZi-Lu WangYun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991

    9. [9]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    10. [10]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    11. [11]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    12. [12]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    13. [13]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    14. [14]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    15. [15]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    18. [18]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    19. [19]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    20. [20]

      Huijiao FuPeiqin LiangQianwen ChenYan WangGuang LiXuzi CaiShengtao WangKun ChenShengying ShiZhiqiang YuXuefeng Wang . COX-2 blocking therapy in cisplatin chemosensitization of ovarian cancer: An allicin-based nanomedicine approach. Chinese Chemical Letters, 2024, 35(8): 109241-. doi: 10.1016/j.cclet.2023.109241

Metrics
  • PDF Downloads(3)
  • Abstract views(761)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return