Fluoride-assisted synthesis of anatase TiO2 nanocrystals with tunable shape and band gap via a solvothermal approach
- Corresponding author: Tang Ai-Wei, awtang@bjtu.edu.cn
Citation:
Liu Zhe-Ming, Peng Lan, Tang Ai-Wei. Fluoride-assisted synthesis of anatase TiO2 nanocrystals with tunable shape and band gap via a solvothermal approach[J]. Chinese Chemical Letters,
;2016, 27(12): 1801-1804.
doi:
10.1016/j.cclet.2016.04.016
Y.D. Liu, A.W. Tang, Q. Zhang, Y.D. Yin. Seed-mediated growth of anatase TiO2 nanocrystals with core-antenna structures for enhanced photocatalytic activity[J]. J. Am. Chem. Soc., 2015,137:11327-11339. doi: 10.1021/jacs.5b04676
S.B. Wang, L. Pan, J.J. Song. Titanium-defected undoped anatase TiO2 with ptype conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance[J]. J. Am. Chem. Soc., 2015,137:2975-2983. doi: 10.1021/ja512047k
M. Dahl, Y.D. Liu, Y.D. Yin. Composite titanium dioxide nanomaterials[J]. Chem. Rev., 2014,114:9853-9889. doi: 10.1021/cr400634p
H.Y. Liu, J.B. Joo, M. Dahl. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity[J]. Energy Environ. Sci., 2015,8:286-296. doi: 10.1039/C4EE02618G
H. Wang, B.L. Wang, S.Y. Ma. Synthesis of visible-light-driven TiO2 yolk-shell spheres with {001} facets dominated mesoporous shells[J]. Chin. Chem. Lett., 2013,24:260-263. doi: 10.1016/j.cclet.2013.01.046
W.S. Wang, Q.N. Sa, J.H. Chen. Porous TiO2/C nanocomposite shells as a highperformance anode material for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2013,5:6478-6483. doi: 10.1021/am402350n
R. Liu, P. Wang, X.F. Wang, H.G. Yu, J.G. Yu. UV- and visible-light photocatalytic activity of simultaneously deposited and doped Ag/Ag(I)-TiO2 photocatalyst[J]. J. Phys. Chem. C, 2012,116:17721-17728. doi: 10.1021/jp305774n
H.G. Yu, W.Y. Chen, X.F. Wang, Y. Xu, J.G. Yu. Enhanced photocatalytic activity and photoinduced stability of Ag-based photocatalysts:the synergistic action of amorphous-Ti(IV) and Fe(Ⅲ) cocatalysts[J]. Appl. Catal. B:Environ., 2016,187:163-170. doi: 10.1016/j.apcatb.2016.01.011
X.F. Wang, K. Wang, K.W. Feng. Greatly enhanced photocatalytic activity of TiO2-xNx by a simple surface modification of Fe(Ⅲ) cocatalyst[J]. J. Mol. Catal. A:Chem., 2014,391:92-98. doi: 10.1016/j.molcata.2014.04.015
Q.L. Xu, J.G. Yu, J. Zhang, J.F. Zhang, G. Liu. Cubic anatase TiO2 nanocrystals with enhanced photocatalytic CO2 reduction activity[J]. Chem. Commun., 2015,51:7950-7953.
J.B. Joo, M. Dahl, N. Li, F. Zaera, Y.D. Yin. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications[J]. Energy Environ. Sci., 2013,6:2082-2092. doi: 10.1039/c3ee41155a
S. Yang, N. Huang, Y.M. Jin. Crystal shape engineering of anatase TiO2 and its biomedical applications[J]. CrystEngComm, 2015,17:6617-6631. doi: 10.1039/C5CE00804B
M. Cargnello, T.R. Gordon, C.B. Murray. Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals[J]. Chem. Rev., 2014,114:9319-9345. doi: 10.1021/cr500170p
Z.L. Cheng, S. Han. Preparation of a novel composite electrode based on N-doped TiO2-coated NaY zeolite membrane and its photoelectrocatalytic performance[J]. Chin. Chem. Lett., 2016,27:467-470. doi: 10.1016/j.cclet.2015.12.010
L. Qian, Z.S. Jin, S.Y. Yang, Z.L. Du, X.R. Xu. Bright visible photoluminescence from nanotube titania grown by soft chemical process[J]. Chem. Mater., 2005,17:5334-5338. doi: 10.1021/cm050851b
T.R. Gordon, M. Cargnello, T. Paik. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity[J]. J. Am. Chem. Soc., 2012,134:6751-6761. doi: 10.1021/ja300823a
C.T. Dinh, T.D. Nguyen, F. Kleitz, T.O. Do. Shape-controlled synthesis of highly crystalline titania nanocrystals[J]. ACS Nano, 2009,3:3737-3743. doi: 10.1021/nn900940p
W.F. Yan, B. Chen, S.M. Mahurin, S. Dai, S.H. Overbury. Brookite-supported highly stable gold catalytic system for CO oxidation[J]. Chem. Commun., 2004:1918-1919.
H.G. Yang, C.H. Sun, S.Z. Qiao. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature, 2008,453:638-641. doi: 10.1038/nature06964
J. Joo, S.G. Kwon, T. Yu. Large-scale synthesis of TiO2 nanorods via nonhydrolytic Sol-Gel ester elimination reaction and their application to photocatalytic inactivation of E. coli[J]. J. Phys. Chem. B, 2005,109:15297-15302. doi: 10.1021/jp052458z
S. Kalathil, M.M. Khan, S.A. Ansari, J. Lee, M.H. Cho. Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity[J]. Nanoscale, 2013,5:6323-6326. doi: 10.1039/c3nr01280h
X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011,331:746-750. doi: 10.1126/science.1200448
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
Ao Sun , Zipeng Li , Shuchun Li , Xiangbao Meng , Zhongtang Li , Zhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Bohan Zhang , Bingzhe Wang , Guichuan Xing , Zikang Tang , Songnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Qi Li , Zi-Lu Wang , Yun-He Xu . Copper-catalyzed 1,4-silylcyanation of 1,3-enynes: A silyl radical-initiated approach for synthesis of difunctionalized allenes. Chinese Chemical Letters, 2025, 36(3): 109991-. doi: 10.1016/j.cclet.2024.109991
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Jiatong Li , Linlin Zhang , Peng Huang , Chengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
Huijiao Fu , Peiqin Liang , Qianwen Chen , Yan Wang , Guang Li , Xuzi Cai , Shengtao Wang , Kun Chen , Shengying Shi , Zhiqiang Yu , Xuefeng Wang . COX-2 blocking therapy in cisplatin chemosensitization of ovarian cancer: An allicin-based nanomedicine approach. Chinese Chemical Letters, 2024, 35(8): 109241-. doi: 10.1016/j.cclet.2023.109241