π-Conjugated cyanostilbene-based optoelectric functional materials
- Corresponding author: Liang-Liang Zhu, molecules.zhuliangliang@fudan.edu.cn
Citation: Cheng Hang, Hong-Wei Wu, Liang-Liang Zhu. π-Conjugated cyanostilbene-based optoelectric functional materials[J]. Chinese Chemical Letters, ;2016, 27(8): 1155-1165. doi: 10.1016/j.cclet.2016.04.003
(a) A.C. Grimsdale, K. Müllen, The chemistry of organic nanomaterials, Angew. Chem. Int. Ed. 44(2005) 5592-5629; (b) B. Domercq, R.D. Hreha, Y.D. Zhang, et al., Photo-patternable hole-transport polymers for organic light-emitting diodes, Chem. Mater. 15(2003) 1491-1496; (c) H.A. Al-Attar, G.C. Griffiths, T.N. Moore, et al., Highly efficient, solutionprocessed, single-layer, electrophosphorescent diodes and the effect of molecular dipole moment, Adv. Funct. Mater. 21(2011) 2376-2382; (d) C.L. Ho, W.Y. Wong, Z.Q. Gao, et al., Red-light-emitting iridium complexes with hole-transporting 9-arylcarbazole moieties for electrophosphorescence efficiency/color purity trade-off optimization, Adv. Funct. Mater. 18(2008) 319-331; (e) C.W. Hsu, C.C. Lin, M.W. Chung, et al., Systematic investigation of the metalstructure-photophysics relationship of emissive d10-complexes of group 11 elements: the prospect of application in organic light emitting devices, J. Am. Chem. Soc. 133(2011) 12085-12099; (f) Z.Y. Zhang, B. Xu, J.H. Su, et al., Color-tunable solid-state emission of 2,2'-biindenyl-based fluorophores, Angew. Chem. Int. Ed. 50(2011) 11654-11657.
(a) A.P. de Silva, S. Uchiyama, Molecular logic and computing, Nat. Nanotechnol. 2(2007) 399-410; (b) H.N. Kim, Z.Q. Guo, W.H. Zhu, J. Yoon, H. Tian, Recent progress on polymerbased fluorescent and colorimetric chemosensors, Chem. Soc. Rev. 40(2011) 79-93; (c) M. Amiel-Levy, S. Hoz, Guidelines for the use of proton donors in SmI2 reactions: reduction of α-cyanostilbene, J. Am. Chem. Soc. 131(2009) 8280-8284.
(a) Z.X. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev. 41(2012) 2590-2605; (b) Y. You, S. Lee, T. Kim, et al., Phosphorescent sensor for biological mobile zinc, J. Am. Chem. Soc. 133(2011) 18328-18342; (c) J. Bouffard, Y. Kim, T.M. Swager, R. Weissleder, S.A. Hilderbrand, A highly selective fluorescent probe for thiol bioimaging, Org. Lett. 10(2008) 37-40.
(a) L. Maggini, D. Bonifazi, Hierarchised luminescent organic architectures: design, synthesis, self-assembly, self-organisation and functions, Chem. Soc. Rev. 41(2011) 211-241; (b) K.M.C. Wong, V.W.W. Yam, Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior, Acc. Chem. Res. 44(2011) 424-434.
(a) C. Gu, T. Fei, L. Yao, et al., Multilayer polymer stacking by in situ electrochemical polymerization for color-stable white electroluminescence, Adv. Mater. 23(2011) 527-530; (b) H.B. Wu, G.J. Zhou, J.H. Zou, et al., Efficient polymer white-light-emitting devices for solid-state lighting, Adv. Mater. 21(2009) 4181-4184.
(a) Y. Sagara, T. Kato, Stimuli-responsive luminescent liquid crystals: change of photoluminescent colors triggered by a shear-induced phase transition, Angew. Chem. Int. Ed. 47(2008) 5175-5178; (b) A.J. Zucchero, P.L. Mcgrier, U.H.F. Bunz, Cross-conjugated cruciform fluorophores, Acc. Chem. Res. 43(2010) 397-408; (c) D.W. Chang, L.M. Dai, Luminescent amphiphilic dendrimers with oligo(p-phenylene vinylene) core branches and oligo(ethylene oxide) terminal chains: Syntheses and stimuli-responsive properties, J. Mater. Chem. 17(2007) 364-371; (d) D. Wang, T. Liu, J. Yin, S.Y. Liu, Stimuli-responsive fluorescent poly(N-isopropylacrylamide) microgels labeled with phenylboronic acid moieties as multifunctional ratiometric probes for glucose and temperatures, Macromolecules 44(2011) 2282-2290; (e) Z.Q. Guo, W.H. Zhu, H. Tian, Dicyanomethylene-4H-pyran chromophores for OLED emitters, logic gates and optical chemosensors, Chem. Commun. 48(2012) 6073-6084.
(a) L.L. Zhu, X. Ma, F.Y. Ji, Q.C. Wang, H. Tian, Effective enhancement of fluorescence signals in rotaxane-doped reversible hydrosol-gel systems, Chemistry 13(2007) 9216-9222; (b) L.L. Zhu, H. Yan, C.Y. Ang, et al., Photoswitchable supramolecular catalysis by interparticle host-guest competitive binding, Chemistry 18(2012) 13979-13983; (c) L.L. Zhu, H. Yan, K.T. Nguyen, H. Tian, Y.L. Zhao, Sequential self-assembly for construction of Pt(II)-bridged[3] rotaxanes on gold nanoparticles, Chem. Commun. 48(2012) 4290-4292.
W. Fuß, C. Kosmidis, W.E. Schmid, S.A. Trushin. The photochemical cis-trans isomerization of free stilbene molecules follows a hula-twist pathway[J]. Angew. Chem. Int. Ed., 2004,43:4178-4182. doi: 10.1002/(ISSN)1521-3773
D. Tzeli, G. Theodorakopoulos, I.D. Petsalakis, D. Ajami, J. Rebek Jr.. Conformations and fluorescence of encapsulated stilbene[J]. J. Am. Chem. Soc., 2012,134:4346-4354. doi: 10.1021/ja211164b
Z.R. Grabowski, K. Rotkiewicz, W. Rettig. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures[J]. Chem. Rev., 2003,103:3899-4032. doi: 10.1021/cr940745l
L.L. Zhu, Y.L. Zhao. Cyanostilbene-based intelligent organic optoelectronic materials[J]. J. Mater. Chem. C, 2013,1:1059-1065. doi: 10.1039/C2TC00593J
S.W. Thomas III, G.D. Joly, T.M. Swager. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chem. Rev., 2007,107:1339-1386. doi: 10.1021/cr0501339
J.D. Luo, Z.L. Xie, J.W.Y. Lam. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem. Commun., 2001:1740-1741.
B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park. Enhanced emission and its switching in fluorescent organic nanoparticles[J]. J. Am. Chem. Soc., 2002,124:14410-14415. doi: 10.1021/ja0269082
(a) Y.N. Hong, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications, Chem. Commun. (2009) 4332-4353; (b) Y.N. Hong, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission, Chem. Soc. Rev. 40(2011) 5361-5388.
B.K. An, D.S. Lee, J.S. Lee. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative[J]. J. Am. Chem. Soc., 2004,126:10232-10233. doi: 10.1021/ja046215g
(a) B.K. An, J. Gierschner, S.Y. Park, π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport, Acc. Chem. Res. 45(2012) 544-554;(b) Y.J. Zhang, J.W. Sun, G.F. Bian, et al., Cyanostilben-based derivatives: mechanical stimuli-responsive luminophors with aggregation-induced emission enhancement, Photochem. Photobiol. Sci. 11(2012) 1414-1421; (c) C.H. Chen, S.L. Lee, T.S. Lim, C.H. Chen, T.Y. Luh, Influence of polymer conformations on the aggregation behaviour of alternating dialkylsilylene-[4,4'-divinyl(cyanostilbene)] copolymers, Polym. Chem. 2(2011) 2850-2856.
K.A.N. Upamali, L.A. Estrada, P.K. De. Carbazole-based cyano-stilbene highly fluorescent microcrystals[J]. Langmuir, 2011,27:1573-1580. doi: 10.1021/la103894x
W.M. Leevy, S.T. Gammon, H. Jiang. Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe[J]. J. Am. Chem. Soc., 2006,128:16476-16477. doi: 10.1021/ja0665592
C.K. Lim, S. Kim, I.C. Kwon, C.H. Ahn, S.Y. Park. Dye-condensed biopolymeric hybrids: chromophoric aggregation and self-assembly toward fluorescent bionanoparticles for near infrared bioimaging[J]. Chem. Mater., 2009,21:5819-5825. doi: 10.1021/cm902379x
(a) W. Qin, D. Ding, J.Z. Liu, et al., Biocompatible nanoparticles with aggregationinduced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications, Adv. Funct. Mater. 22(2012) 771-779; (b) K. Li, W. Qin, D. Ding, et al., Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing, Sci. Rep. 3(2013) 1150; (c) W. Qin, K. Li, G.X. Feng, et al., Bright and photostable organic fluorescent dots with aggregation-induced emission characteristics for noninvasive long-term cell imaging, Adv. Funct. Mater. 24(2014) 635-643.
M. Shimizu, R. Kaki, Y. Takeda. 1,4-Bis(diarylamino)-2,5-bis(4-cyanophenylethenyl) benzenes: Fluorophores exhibiting efficient red and near-infrared emissions in solid state[J]. Angew. Chem. Int. Ed., 2012,51:4095-4099. doi: 10.1002/anie.201108943
H.G. Lu, Y.D. Zheng, X.W. Zhao. Highly efficient far red/near-infrared solid fluorophores: aggregation-induced emission, intramolecular charge transfer, twisted molecular conformation, and bioimaging applications[J]. Angew. Chem. Int. Ed., 2016,55:155-159. doi: 10.1002/anie.201507031
J.C. Hummelen, B.W. Knight, F. Lepeq. Preparation and characterization of fulleroid and methanofullerene derivatives[J]. J. Org. Chem., 1995,60:532-538. doi: 10.1021/jo00108a012
B.C. Thompson, J.M.J. Fréchet. Polymer-fullerene composite solar cells[J]. Angew. Chem. Int. Ed., 2007,47:58-77.
J.A. Mikroyannidis, A.N. Kabanakis, S.S. Sharma, G.D. Sharma. A simple and effective modification of PCBM for use as an electron acceptor in efficient bulk heterojunction solar cells[J]. Adv. Funct. Mater., 2011,21:746-755. doi: 10.1002/adfm.201001807
(a) J.H. Kim, H.U. Kim, W.S. Shin, et al., Synthesis and characterization of conjugated polymers containing low-bandgap arylenevinylene units, Sol. Energy Mater. Sol. Cells 101(2012) 131-139; (b) B. Kim, H.R. Yeom, W.Y. Choi, J.Y. Kim, C. Yang, Synthesis and characterization of a bis-methanofullerene-4-nitro-α-cyanostilbene dyad as a potential acceptor for high-performance polymer solar cells, Tetrahedron 68(2012) 6696-6700.
(a) K. Luby-Phelps, Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area, Int. Rev. Cytol. 192(1999) 189-221; (b) M.K. Kuimova, S.W. Botchway, A.W. Parker, et al., Imaging intracellular viscosity of a single cell during photoinduced cell death, Nat. Chem. 1(2009) 69-73; (c) K.P. Ghiggino, J.A. Hutchison, S.J. Langford, et al., Porphyrin-based molecular rotors as fluorescent probes of nanoscale environments, Adv. Funct. Mater. 17(2007) 805-813.
(a) M.A. Haidekker, T.P. Brady, D. Lichlyter, E.A. Theodorakis, A ratiometric fluorescent viscosity sensor, J. Am. Chem. Soc. 128(2006) 398-399; (b) M.A. Haidekker, E.A. Theodorakis, Molecular rotors-fluorescent biosensors for viscosity and flow, Org. Biomol. Chem. 5(2007) 1669-1678; (c) F.K. Zhou, J.Y. Shao, Y.B. Yang, et al., Molecular rotors as fluorescent viscosity sensors: molecular design, polarity sensitivity, dipole moments changes, screening solvents, and deactivation channel of the excited states, Eur. J. Org. Chem. 2011(2011) 4773-4787.
T. Förster, G. Hoffmann. Die Viskositätsabhängigkeit der fluoreszenzquantenausbeuten einiger farbstoffsysteme[J]. Z. Phys. Chem., 1971,75:63-76. doi: 10.1524/zpch.1971.75.1_2.063
L.L. Zhu, X. Li, F.Y. Ji. Photolockable ratiometric viscosity sensitivity of cyclodextrin polypseudorotaxane with light-active rotor graft[J]. Langmuir, 2009,25:3482-3486. doi: 10.1021/la8042457
L.L. Zhu, D.H. Qu, D. Zhang. Dual-mode tunable viscosity sensitivity of a rotor-based fluorescent dye[J]. Tetrahedron, 2010,66:1254-1260. doi: 10.1016/j.tet.2009.12.014
L.L. Zhu, X. Li, Q. Zhang. Unimolecular photoconversion of multicolor luminescence on hierarchical self-assemblies[J]. J. Am. Chem. Soc., 2013,135:5175-5182. doi: 10.1021/ja400456h
(a) S. Tasch, E.J.W. List, O. Ekström, et al., Efficient white light-emitting diodes realized with new processable blends of conjugated polymers, Appl. Phys. Lett. 71(1997) 2883-2885; (b) B.W. D'Andrade, S.R. Forrest, White organic light-emitting devices for solidstate lighting, Adv. Mater. 16(2004) 1585-1595.
(a) X. Zhang, S. Rehm, M.M. Safont-Sempere, F. Würthner, Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems, Nat. Chem. 1(2009) 623-629; (b) M. Vasilopoulou, D. Georgiadou, G. Pistolis, P. Argitis, Tuning the emitting color of organic light-emitting diodes through photochemically induced transformations: towards single-layer, patterned, full-color displays and white-lighting applications, Adv. Funct. Mater. 17(2007) 3477-3485.
L.L. Zhu, C.Y. Ang, X. Li. Luminescent color conversion on cyanostilbenefunctionalized quantum dots via in-situ photo-tuning[J]. Adv. Mater., 2012,24:4020-4024. doi: 10.1002/adma.v24.29
S.J. Lim, B.K. An, S.D. Jung, M.A. Chung, S.Y. Park. Photoswitchable organic nanoparticles and a polymer film employing multifunctional molecules with enhanced fluorescence emission and bistable photochromism[J]. Angew. Chem. Int. Ed., 2004,43:6346-6350. doi: 10.1002/(ISSN)1521-3773
W.Z. Yuan, Y.Q. Tan, Y.Y. Gong. Synergy between twisted conformation and effective intermolecular interactions: strategy for efficient mechanochromic luminogens with high contrast[J]. Adv. Mater., 2013,25:2837-2843. doi: 10.1002/adma.201205043
B. Xu, J.B. Zhang, W.J. Tian, Aggregation-induced emission of 9,10-distyrylanthracene derivatives and their applications, in: A.J. Qin, B.Z. Tang (Eds.), Aggregation-Induced Emission: Fundamentals and Applications, John Wiley and Sons Ltd, New York, 2013, pp. 61-82.
X.L. Luo, J.N. Li, C.H. Li. Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli[J]. Adv. Mater., 2011,23:3261-3265. doi: 10.1002/adma.201101059
G.H. Zhang, J.B. Sun, P.C. Xue. Phenothiazine modified triphenylacrylonitrile derivates: AIE and mechanochromism tuned by molecular conformation[J]. J. Mater. Chem. C, 2015,3:2925-2932. doi: 10.1039/C4TC02925A
M. Miyauchi, Y. Takashima, H. Yamaguchi, A. Harada. Chiral supramolecular polymers formed by host-guest interactions[J]. J. Am. Chem. Soc., 2005,127:2984-2989. doi: 10.1021/ja043289j
R.N. Dsouza, U. Pischel, W.M. Nau. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution[J]. Chem. Rev., 2011,111:7941-7980. doi: 10.1021/cr200213s
(a) C.J. Li, X.Y. Shu, J. Li, et al., Complexation of 1,4-bis(pyridinium)butanes by negatively charged carboxylatopillar[5] arene, J. Org. Chem. 76(2011) 8458-8465; (b) Y. Yao, M. Xue, J.Z. Chen, M.M. Zhang, F.H. Huang, An amphiphilic pillar[5]-arene: synthesis, controllable self-assembly in water, and application in calcein release and TNT adsorption, J. Am. Chem. Soc. 134(2012) 15712-15715; (c) H.C. Zhang, K.T. Nguyen, X. Ma, et al., Host-guest complexation driven dynamic supramolecular self-assembly, Org. Biomol. Chem. 11(2013) 2070-2074.
(a) G.C. Yu, X.R. Zhou, Z.B. Zhang, et al., Pillar[6] arene/paraquat molecular recognition in water: high binding strength, ph-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning, J. Am. Chem. Soc. 134(2012) 19489-19497; (b) M. Xue, Y. Yang, X.D. Chi, Z.B. Zhang, F.H. Huang, Pillararenes, a new class of macrocycles forsupramolecular chemistry,Acc. Chem.Res. 45(2012) 1294-1308.
(a) A. Harada, Y. Takashima, H. Yamaguchi, Cyclodextrin-based supramolecular polymers, Chem. Soc. Rev. 38(2009) 875-882; (b) X. Ma, H. Tian, Stimuli-responsive supramolecular polymers in aqueous solution, Acc. Chem. Res. 47(2014) 1971-1981.
(a) K.L. Zhu, V.N. Vukotic, S.J. Loeb, Molecular shuttling of a compact and rigid hshaped[2] rotaxane, Angew. Chem. Int. Ed. 51(2012) 2168-2172; (b) Y.H. Lin, C.C. Lai, Y.H. Liu, S.M. Peng, S.H. Chiu, Sodium ions template the formation of rotaxanes from BPX26C6 and nonconjugated amide and urea functionalities, Angew. Chem. Int. Ed. 52(2013) 10231-10236.
R.J. Hooley, J. Rebek Jr.. Deep cavitands provide organized solvation of reactions[J]. J. Am. Chem. Soc., 2005,127:11904-11905. doi: 10.1021/ja052910s
D.S. Guo, Y. Liu. Calixarene-based supramolecular polymerization in solution[J]. Chem. Soc. Rev., 2012,41:5907-5921. doi: 10.1039/c2cs35075k
J. del Barrio, P.N. Horton, D. Lairez. Photocontrol over cucurbit[8] uril complexes: stoichiometry and supramolecular polymers[J]. J. Am. Chem. Soc., 2013,135:11760-11763. doi: 10.1021/ja406556h
(a) N.L. Strutt, R.S. Forgan, J.M. Spruell, Y.Y. Botros, J.F. Stoddart, Monofunctionalized pillar[5] arene as a host for alkanediamines, J. Am. Chem. Soc. 133(2011) 5668-5671; (b) H. Li, D.X. Chen, Y.L. Sun, et al., Viologen-mediated assembly of and sensing with carboxylatopillar[5] arene-modified gold nanoparticles, J. Am. Chem. Soc. 135(2013) 1570-1576.
B.B. Shi, K.C. Jie, Y.J. Zhou. Nanoparticles with near-infrared emission enhanced by pillararene-based molecular recognition in water[J]. J. Am. Chem. Soc., 2016,138:80-83. doi: 10.1021/jacs.5b11676
X. Ma, R.Y. Sun, W.F. Li, H. Tian. Novel electrochemical and pH stimulus-responsive supramolecular polymer with disparate pseudorotaxanes as relevant unimers[J]. Polym. Chem., 2011,2:1068-1070. doi: 10.1039/c0py00419g
R.Y. Sun, Q.W. Zhang, Q.C. Wang, X. Ma. Novel supramolecular CT polymer employing disparate pseudorotaxanes as relevant monomers[J]. Polymer, 2013,54:2506-2510. doi: 10.1016/j.polymer.2013.03.030
L.L. Zhu, F.Y. Ji, Q.C. Wang. Address-crossing digital information processing on a self-aggregatable cyclodextrin derivative based nanosystem[J]. Front. Chem. China, 2009,4:278-291. doi: 10.1007/s11458-009-0088-6
Mao-Fan Li , Ming‐Yu Guo , De-Xuan Liu , Xiao-Xian Chen , Wei-Jian Xu , Wei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507
Shaohua Zhang , Xiaojuan Dai , Wei Hao , Liyao Liu , Yingqiao Ma , Ye Zou , Jia Zhu , Chong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837
Yulin Mao , Jingyu Ma , Jiecheng Ji , Yuliang Wang , Wanhua Wu , Cheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
Ze Wang , Hao Liang , Annan Liu , Xingchen Li , Lin Guan , Lei Li , Liang He , Andrew K. Whittaker , Bai Yang , Quan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765
Shan Jiang , Lingchen Meng , Wenyue Ma , Qingkai Qi , Wei Zhang , Bin Xu , Leijing Liu , Wenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998
Chu Chu , Yuancheng Qin , Cailing Ni , Jianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616
Tian Cao , Xuyin Ding , Qiwen Peng , Min Zhang , Guoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238
Zhe-Han Yang , Jie Yin , Lei Xin , Yuanfang Li , Yijie Huang , Ruo Yuan , Ying Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558
Lumin Zheng , Ying Bai , Chuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589
Conghui Wang , Lei Xu , Zhenhua Jia , Teck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075
Xiangjun Zhang , Xiaodi Yang , Yan Wang , Zhongping Xu , Sisi Yi , Tao Guo , Yue Liao , Xiyu Tang , Jianxiang Zhang , Ruibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854
Zixu Xie , Pengfei Zhang , Ziyao Zhang , Chen Chen , Xing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768
Hanying Li , Wee-Liat Ong . “Super-heterojunctioned” thermoelectric polymers. Chinese Chemical Letters, 2025, 36(2): 110523-. doi: 10.1016/j.cclet.2024.110523
Ruikui YAN , Xiaoli CHEN , Miao CAI , Jing REN , Huali CUI , Hua YANG , Jijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
Rui Wang , Yang Liang , Julius Rebek Jr. , Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228