Citation: Cheng Hang, Hong-Wei Wu, Liang-Liang Zhu. π-Conjugated cyanostilbene-based optoelectric functional materials[J]. Chinese Chemical Letters, ;2016, 27(8): 1155-1165. doi: 10.1016/j.cclet.2016.04.003 shu

π-Conjugated cyanostilbene-based optoelectric functional materials

  • Corresponding author: Liang-Liang Zhu, molecules.zhuliangliang@fudan.edu.cn
  • Received Date: 3 March 2016
    Revised Date: 28 March 2016
    Accepted Date: 1 April 2016
    Available Online: 13 August 2016

Figures(12)

  • π-Conjugated organic luminescent materials are essential components for modern optical and photoelectric research. This review mainly probes into the recent work in the progress of smart π-conjugated organic systems in the form of cyanostilbene and its derivatives, which can regulate its excellent features in response to a variety of physical or chemical stimuli (e.g. viscosity, light, magnetism, electric field, polarity, pH and solvent environment). As a result of its extensive applicability and adaptability, cyanostilbene and its derivatives have been planted into different structural architectures such as polymers, functional nanoparticles, solid membranes, supramolecular systems and so on. This review will first give a general description of the preparation and characterization of cyanostilbenebased optoelectric luminophores and then focus on their peculiar functional properties in the need for advanced material applications, such as AIEE (aggregation-induced enhanced emission effect), solidstate emission, photovoltaics, photolithography and photochromism to be further processed afterwards. The purpose of this review is to give a platform of practical organic materials, mostly cyanostilbene and its derivatives, based on stable aromatic derivatives, to contribute to the booming of modern π-conjugated photoelectric materials that integrate with contemporary physics, material chemistry, bioengineering, medical science and aerospace altogether.
  • 加载中
    1. [1]

      (a) A.C. Grimsdale, K. Müllen, The chemistry of organic nanomaterials, Angew. Chem. Int. Ed. 44(2005) 5592-5629; (b) B. Domercq, R.D. Hreha, Y.D. Zhang, et al., Photo-patternable hole-transport polymers for organic light-emitting diodes, Chem. Mater. 15(2003) 1491-1496; (c) H.A. Al-Attar, G.C. Griffiths, T.N. Moore, et al., Highly efficient, solutionprocessed, single-layer, electrophosphorescent diodes and the effect of molecular dipole moment, Adv. Funct. Mater. 21(2011) 2376-2382; (d) C.L. Ho, W.Y. Wong, Z.Q. Gao, et al., Red-light-emitting iridium complexes with hole-transporting 9-arylcarbazole moieties for electrophosphorescence efficiency/color purity trade-off optimization, Adv. Funct. Mater. 18(2008) 319-331; (e) C.W. Hsu, C.C. Lin, M.W. Chung, et al., Systematic investigation of the metalstructure-photophysics relationship of emissive d10-complexes of group 11 elements: the prospect of application in organic light emitting devices, J. Am. Chem. Soc. 133(2011) 12085-12099; (f) Z.Y. Zhang, B. Xu, J.H. Su, et al., Color-tunable solid-state emission of 2,2'-biindenyl-based fluorophores, Angew. Chem. Int. Ed. 50(2011) 11654-11657. 

    2. [2]

      (a) A.P. de Silva, S. Uchiyama, Molecular logic and computing, Nat. Nanotechnol. 2(2007) 399-410; (b) H.N. Kim, Z.Q. Guo, W.H. Zhu, J. Yoon, H. Tian, Recent progress on polymerbased fluorescent and colorimetric chemosensors, Chem. Soc. Rev. 40(2011) 79-93; (c) M. Amiel-Levy, S. Hoz, Guidelines for the use of proton donors in SmI2 reactions: reduction of α-cyanostilbene, J. Am. Chem. Soc. 131(2009) 8280-8284. 

    3. [3]

      (a) Z.X. Li, J.C. Barnes, A. Bosoy, J.F. Stoddart, J.I. Zink, Mesoporous silica nanoparticles in biomedical applications, Chem. Soc. Rev. 41(2012) 2590-2605; (b) Y. You, S. Lee, T. Kim, et al., Phosphorescent sensor for biological mobile zinc, J. Am. Chem. Soc. 133(2011) 18328-18342; (c) J. Bouffard, Y. Kim, T.M. Swager, R. Weissleder, S.A. Hilderbrand, A highly selective fluorescent probe for thiol bioimaging, Org. Lett. 10(2008) 37-40. 

    4. [4]

      (a) L. Maggini, D. Bonifazi, Hierarchised luminescent organic architectures: design, synthesis, self-assembly, self-organisation and functions, Chem. Soc. Rev. 41(2011) 211-241; (b) K.M.C. Wong, V.W.W. Yam, Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: modulation of photophysical properties through aggregation behavior, Acc. Chem. Res. 44(2011) 424-434. 

    5. [5]

      (a) C. Gu, T. Fei, L. Yao, et al., Multilayer polymer stacking by in situ electrochemical polymerization for color-stable white electroluminescence, Adv. Mater. 23(2011) 527-530; (b) H.B. Wu, G.J. Zhou, J.H. Zou, et al., Efficient polymer white-light-emitting devices for solid-state lighting, Adv. Mater. 21(2009) 4181-4184. 

    6. [6]

      (a) Y. Sagara, T. Kato, Stimuli-responsive luminescent liquid crystals: change of photoluminescent colors triggered by a shear-induced phase transition, Angew. Chem. Int. Ed. 47(2008) 5175-5178; (b) A.J. Zucchero, P.L. Mcgrier, U.H.F. Bunz, Cross-conjugated cruciform fluorophores, Acc. Chem. Res. 43(2010) 397-408; (c) D.W. Chang, L.M. Dai, Luminescent amphiphilic dendrimers with oligo(p-phenylene vinylene) core branches and oligo(ethylene oxide) terminal chains: Syntheses and stimuli-responsive properties, J. Mater. Chem. 17(2007) 364-371; (d) D. Wang, T. Liu, J. Yin, S.Y. Liu, Stimuli-responsive fluorescent poly(N-isopropylacrylamide) microgels labeled with phenylboronic acid moieties as multifunctional ratiometric probes for glucose and temperatures, Macromolecules 44(2011) 2282-2290; (e) Z.Q. Guo, W.H. Zhu, H. Tian, Dicyanomethylene-4H-pyran chromophores for OLED emitters, logic gates and optical chemosensors, Chem. Commun. 48(2012) 6073-6084. 

    7. [7]

      (a) L.L. Zhu, X. Ma, F.Y. Ji, Q.C. Wang, H. Tian, Effective enhancement of fluorescence signals in rotaxane-doped reversible hydrosol-gel systems, Chemistry 13(2007) 9216-9222; (b) L.L. Zhu, H. Yan, C.Y. Ang, et al., Photoswitchable supramolecular catalysis by interparticle host-guest competitive binding, Chemistry 18(2012) 13979-13983; (c) L.L. Zhu, H. Yan, K.T. Nguyen, H. Tian, Y.L. Zhao, Sequential self-assembly for construction of Pt(II)-bridged[3] rotaxanes on gold nanoparticles, Chem. Commun. 48(2012) 4290-4292. 

    8. [8]

      W. Fuß, C. Kosmidis, W.E. Schmid, S.A. Trushin. The photochemical cis-trans isomerization of free stilbene molecules follows a hula-twist pathway[J]. Angew. Chem. Int. Ed., 2004,43:4178-4182. doi: 10.1002/(ISSN)1521-3773

    9. [9]

      D. Tzeli, G. Theodorakopoulos, I.D. Petsalakis, D. Ajami, J. Rebek Jr.. Conformations and fluorescence of encapsulated stilbene[J]. J. Am. Chem. Soc., 2012,134:4346-4354. doi: 10.1021/ja211164b

    10. [10]

      Z.R. Grabowski, K. Rotkiewicz, W. Rettig. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures[J]. Chem. Rev., 2003,103:3899-4032. doi: 10.1021/cr940745l

    11. [11]

      L.L. Zhu, Y.L. Zhao. Cyanostilbene-based intelligent organic optoelectronic materials[J]. J. Mater. Chem. C, 2013,1:1059-1065. doi: 10.1039/C2TC00593J

    12. [12]

      S.W. Thomas III, G.D. Joly, T.M. Swager. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chem. Rev., 2007,107:1339-1386. doi: 10.1021/cr0501339

    13. [13]

      J.D. Luo, Z.L. Xie, J.W.Y. Lam. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole[J]. Chem. Commun., 2001:1740-1741.  

    14. [14]

      B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park. Enhanced emission and its switching in fluorescent organic nanoparticles[J]. J. Am. Chem. Soc., 2002,124:14410-14415. doi: 10.1021/ja0269082

    15. [15]

      (a) Y.N. Hong, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications, Chem. Commun. (2009) 4332-4353; (b) Y.N. Hong, J.W.Y. Lam, B.Z. Tang, Aggregation-induced emission, Chem. Soc. Rev. 40(2011) 5361-5388. 

    16. [16]

      B.K. An, D.S. Lee, J.S. Lee. Strongly fluorescent organogel system comprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbene derivative[J]. J. Am. Chem. Soc., 2004,126:10232-10233. doi: 10.1021/ja046215g

    17. [17]

      (a) B.K. An, J. Gierschner, S.Y. Park, π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport, Acc. Chem. Res. 45(2012) 544-554;(b) Y.J. Zhang, J.W. Sun, G.F. Bian, et al., Cyanostilben-based derivatives: mechanical stimuli-responsive luminophors with aggregation-induced emission enhancement, Photochem. Photobiol. Sci. 11(2012) 1414-1421; (c) C.H. Chen, S.L. Lee, T.S. Lim, C.H. Chen, T.Y. Luh, Influence of polymer conformations on the aggregation behaviour of alternating dialkylsilylene-[4,4'-divinyl(cyanostilbene)] copolymers, Polym. Chem. 2(2011) 2850-2856. 

    18. [18]

      K.A.N. Upamali, L.A. Estrada, P.K. De. Carbazole-based cyano-stilbene highly fluorescent microcrystals[J]. Langmuir, 2011,27:1573-1580. doi: 10.1021/la103894x

    19. [19]

      W.M. Leevy, S.T. Gammon, H. Jiang. Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe[J]. J. Am. Chem. Soc., 2006,128:16476-16477. doi: 10.1021/ja0665592

    20. [20]

      C.K. Lim, S. Kim, I.C. Kwon, C.H. Ahn, S.Y. Park. Dye-condensed biopolymeric hybrids: chromophoric aggregation and self-assembly toward fluorescent bionanoparticles for near infrared bioimaging[J]. Chem. Mater., 2009,21:5819-5825. doi: 10.1021/cm902379x

    21. [21]

      (a) W. Qin, D. Ding, J.Z. Liu, et al., Biocompatible nanoparticles with aggregationinduced emission characteristics as far-red/near-infrared fluorescent bioprobes for in vitro and in vivo imaging applications, Adv. Funct. Mater. 22(2012) 771-779; (b) K. Li, W. Qin, D. Ding, et al., Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing, Sci. Rep. 3(2013) 1150; (c) W. Qin, K. Li, G.X. Feng, et al., Bright and photostable organic fluorescent dots with aggregation-induced emission characteristics for noninvasive long-term cell imaging, Adv. Funct. Mater. 24(2014) 635-643. 

    22. [22]

      M. Shimizu, R. Kaki, Y. Takeda. 1,4-Bis(diarylamino)-2,5-bis(4-cyanophenylethenyl) benzenes: Fluorophores exhibiting efficient red and near-infrared emissions in solid state[J]. Angew. Chem. Int. Ed., 2012,51:4095-4099. doi: 10.1002/anie.201108943

    23. [23]

      H.G. Lu, Y.D. Zheng, X.W. Zhao. Highly efficient far red/near-infrared solid fluorophores: aggregation-induced emission, intramolecular charge transfer, twisted molecular conformation, and bioimaging applications[J]. Angew. Chem. Int. Ed., 2016,55:155-159. doi: 10.1002/anie.201507031

    24. [24]

      J.C. Hummelen, B.W. Knight, F. Lepeq. Preparation and characterization of fulleroid and methanofullerene derivatives[J]. J. Org. Chem., 1995,60:532-538. doi: 10.1021/jo00108a012

    25. [25]

      B.C. Thompson, J.M.J. Fréchet. Polymer-fullerene composite solar cells[J]. Angew. Chem. Int. Ed., 2007,47:58-77.  

    26. [26]

      J.A. Mikroyannidis, A.N. Kabanakis, S.S. Sharma, G.D. Sharma. A simple and effective modification of PCBM for use as an electron acceptor in efficient bulk heterojunction solar cells[J]. Adv. Funct. Mater., 2011,21:746-755. doi: 10.1002/adfm.201001807

    27. [27]

      (a) J.H. Kim, H.U. Kim, W.S. Shin, et al., Synthesis and characterization of conjugated polymers containing low-bandgap arylenevinylene units, Sol. Energy Mater. Sol. Cells 101(2012) 131-139; (b) B. Kim, H.R. Yeom, W.Y. Choi, J.Y. Kim, C. Yang, Synthesis and characterization of a bis-methanofullerene-4-nitro-α-cyanostilbene dyad as a potential acceptor for high-performance polymer solar cells, Tetrahedron 68(2012) 6696-6700. 

    28. [28]

      (a) K. Luby-Phelps, Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area, Int. Rev. Cytol. 192(1999) 189-221; (b) M.K. Kuimova, S.W. Botchway, A.W. Parker, et al., Imaging intracellular viscosity of a single cell during photoinduced cell death, Nat. Chem. 1(2009) 69-73; (c) K.P. Ghiggino, J.A. Hutchison, S.J. Langford, et al., Porphyrin-based molecular rotors as fluorescent probes of nanoscale environments, Adv. Funct. Mater. 17(2007) 805-813. 

    29. [29]

      (a) M.A. Haidekker, T.P. Brady, D. Lichlyter, E.A. Theodorakis, A ratiometric fluorescent viscosity sensor, J. Am. Chem. Soc. 128(2006) 398-399; (b) M.A. Haidekker, E.A. Theodorakis, Molecular rotors-fluorescent biosensors for viscosity and flow, Org. Biomol. Chem. 5(2007) 1669-1678; (c) F.K. Zhou, J.Y. Shao, Y.B. Yang, et al., Molecular rotors as fluorescent viscosity sensors: molecular design, polarity sensitivity, dipole moments changes, screening solvents, and deactivation channel of the excited states, Eur. J. Org. Chem. 2011(2011) 4773-4787. 

    30. [30]

      T. Förster, G. Hoffmann. Die Viskositätsabhängigkeit der fluoreszenzquantenausbeuten einiger farbstoffsysteme[J]. Z. Phys. Chem., 1971,75:63-76. doi: 10.1524/zpch.1971.75.1_2.063

    31. [31]

      L.L. Zhu, X. Li, F.Y. Ji. Photolockable ratiometric viscosity sensitivity of cyclodextrin polypseudorotaxane with light-active rotor graft[J]. Langmuir, 2009,25:3482-3486. doi: 10.1021/la8042457

    32. [32]

      L.L. Zhu, D.H. Qu, D. Zhang. Dual-mode tunable viscosity sensitivity of a rotor-based fluorescent dye[J]. Tetrahedron, 2010,66:1254-1260. doi: 10.1016/j.tet.2009.12.014

    33. [33]

      L.L. Zhu, X. Li, Q. Zhang. Unimolecular photoconversion of multicolor luminescence on hierarchical self-assemblies[J]. J. Am. Chem. Soc., 2013,135:5175-5182. doi: 10.1021/ja400456h

    34. [34]

      (a) S. Tasch, E.J.W. List, O. Ekström, et al., Efficient white light-emitting diodes realized with new processable blends of conjugated polymers, Appl. Phys. Lett. 71(1997) 2883-2885; (b) B.W. D'Andrade, S.R. Forrest, White organic light-emitting devices for solidstate lighting, Adv. Mater. 16(2004) 1585-1595. 

    35. [35]

      (a) X. Zhang, S. Rehm, M.M. Safont-Sempere, F. Würthner, Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems, Nat. Chem. 1(2009) 623-629; (b) M. Vasilopoulou, D. Georgiadou, G. Pistolis, P. Argitis, Tuning the emitting color of organic light-emitting diodes through photochemically induced transformations: towards single-layer, patterned, full-color displays and white-lighting applications, Adv. Funct. Mater. 17(2007) 3477-3485. 

    36. [36]

      L.L. Zhu, C.Y. Ang, X. Li. Luminescent color conversion on cyanostilbenefunctionalized quantum dots via in-situ photo-tuning[J]. Adv. Mater., 2012,24:4020-4024. doi: 10.1002/adma.v24.29

    37. [37]

      S.J. Lim, B.K. An, S.D. Jung, M.A. Chung, S.Y. Park. Photoswitchable organic nanoparticles and a polymer film employing multifunctional molecules with enhanced fluorescence emission and bistable photochromism[J]. Angew. Chem. Int. Ed., 2004,43:6346-6350. doi: 10.1002/(ISSN)1521-3773

    38. [38]

      W.Z. Yuan, Y.Q. Tan, Y.Y. Gong. Synergy between twisted conformation and effective intermolecular interactions: strategy for efficient mechanochromic luminogens with high contrast[J]. Adv. Mater., 2013,25:2837-2843. doi: 10.1002/adma.201205043

    39. [39]

      B. Xu, J.B. Zhang, W.J. Tian, Aggregation-induced emission of 9,10-distyrylanthracene derivatives and their applications, in: A.J. Qin, B.Z. Tang (Eds.), Aggregation-Induced Emission: Fundamentals and Applications, John Wiley and Sons Ltd, New York, 2013, pp. 61-82. 

    40. [40]

      X.L. Luo, J.N. Li, C.H. Li. Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli[J]. Adv. Mater., 2011,23:3261-3265. doi: 10.1002/adma.201101059

    41. [41]

      G.H. Zhang, J.B. Sun, P.C. Xue. Phenothiazine modified triphenylacrylonitrile derivates: AIE and mechanochromism tuned by molecular conformation[J]. J. Mater. Chem. C, 2015,3:2925-2932. doi: 10.1039/C4TC02925A

    42. [42]

      M. Miyauchi, Y. Takashima, H. Yamaguchi, A. Harada. Chiral supramolecular polymers formed by host-guest interactions[J]. J. Am. Chem. Soc., 2005,127:2984-2989. doi: 10.1021/ja043289j

    43. [43]

      R.N. Dsouza, U. Pischel, W.M. Nau. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution[J]. Chem. Rev., 2011,111:7941-7980. doi: 10.1021/cr200213s

    44. [44]

      (a) C.J. Li, X.Y. Shu, J. Li, et al., Complexation of 1,4-bis(pyridinium)butanes by negatively charged carboxylatopillar[5] arene, J. Org. Chem. 76(2011) 8458-8465; (b) Y. Yao, M. Xue, J.Z. Chen, M.M. Zhang, F.H. Huang, An amphiphilic pillar[5]-arene: synthesis, controllable self-assembly in water, and application in calcein release and TNT adsorption, J. Am. Chem. Soc. 134(2012) 15712-15715; (c) H.C. Zhang, K.T. Nguyen, X. Ma, et al., Host-guest complexation driven dynamic supramolecular self-assembly, Org. Biomol. Chem. 11(2013) 2070-2074. 

    45. [45]

      (a) G.C. Yu, X.R. Zhou, Z.B. Zhang, et al., Pillar[6] arene/paraquat molecular recognition in water: high binding strength, ph-responsiveness, and application in controllable self-assembly, controlled release, and treatment of paraquat poisoning, J. Am. Chem. Soc. 134(2012) 19489-19497; (b) M. Xue, Y. Yang, X.D. Chi, Z.B. Zhang, F.H. Huang, Pillararenes, a new class of macrocycles forsupramolecular chemistry,Acc. Chem.Res. 45(2012) 1294-1308. 

    46. [46]

      (a) A. Harada, Y. Takashima, H. Yamaguchi, Cyclodextrin-based supramolecular polymers, Chem. Soc. Rev. 38(2009) 875-882; (b) X. Ma, H. Tian, Stimuli-responsive supramolecular polymers in aqueous solution, Acc. Chem. Res. 47(2014) 1971-1981.

    47. [47]

      (a) K.L. Zhu, V.N. Vukotic, S.J. Loeb, Molecular shuttling of a compact and rigid hshaped[2] rotaxane, Angew. Chem. Int. Ed. 51(2012) 2168-2172; (b) Y.H. Lin, C.C. Lai, Y.H. Liu, S.M. Peng, S.H. Chiu, Sodium ions template the formation of rotaxanes from BPX26C6 and nonconjugated amide and urea functionalities, Angew. Chem. Int. Ed. 52(2013) 10231-10236. 

    48. [48]

      R.J. Hooley, J. Rebek Jr.. Deep cavitands provide organized solvation of reactions[J]. J. Am. Chem. Soc., 2005,127:11904-11905. doi: 10.1021/ja052910s

    49. [49]

      D.S. Guo, Y. Liu. Calixarene-based supramolecular polymerization in solution[J]. Chem. Soc. Rev., 2012,41:5907-5921. doi: 10.1039/c2cs35075k

    50. [50]

      J. del Barrio, P.N. Horton, D. Lairez. Photocontrol over cucurbit[8] uril complexes: stoichiometry and supramolecular polymers[J]. J. Am. Chem. Soc., 2013,135:11760-11763. doi: 10.1021/ja406556h

    51. [51]

      (a) N.L. Strutt, R.S. Forgan, J.M. Spruell, Y.Y. Botros, J.F. Stoddart, Monofunctionalized pillar[5] arene as a host for alkanediamines, J. Am. Chem. Soc. 133(2011) 5668-5671; (b) H. Li, D.X. Chen, Y.L. Sun, et al., Viologen-mediated assembly of and sensing with carboxylatopillar[5] arene-modified gold nanoparticles, J. Am. Chem. Soc. 135(2013) 1570-1576. 

    52. [52]

      B.B. Shi, K.C. Jie, Y.J. Zhou. Nanoparticles with near-infrared emission enhanced by pillararene-based molecular recognition in water[J]. J. Am. Chem. Soc., 2016,138:80-83. doi: 10.1021/jacs.5b11676

    53. [53]

      X. Ma, R.Y. Sun, W.F. Li, H. Tian. Novel electrochemical and pH stimulus-responsive supramolecular polymer with disparate pseudorotaxanes as relevant unimers[J]. Polym. Chem., 2011,2:1068-1070. doi: 10.1039/c0py00419g

    54. [54]

      R.Y. Sun, Q.W. Zhang, Q.C. Wang, X. Ma. Novel supramolecular CT polymer employing disparate pseudorotaxanes as relevant monomers[J]. Polymer, 2013,54:2506-2510. doi: 10.1016/j.polymer.2013.03.030

    55. [55]

      L.L. Zhu, F.Y. Ji, Q.C. Wang. Address-crossing digital information processing on a self-aggregatable cyclodextrin derivative based nanosystem[J]. Front. Chem. China, 2009,4:278-291. doi: 10.1007/s11458-009-0088-6

  • 加载中
    1. [1]

      Mao-Fan LiMing‐Yu GuoDe-Xuan LiuXiao-Xian ChenWei-Jian XuWei-Xiong Zhang . Multi-stimuli responsive behaviors in a new chiral hybrid nitroprusside salt (R-3-hydroxypyrrolidinium)2[Fe(CN)5(NO)]. Chinese Chemical Letters, 2024, 35(12): 109507-. doi: 10.1016/j.cclet.2024.109507

    2. [2]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    3. [3]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    4. [4]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    5. [5]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    6. [6]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    7. [7]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    8. [8]

      Ze WangHao LiangAnnan LiuXingchen LiLin GuanLei LiLiang HeAndrew K. WhittakerBai YangQuan Lin . Strength through unity: Alkaline phosphatase-responsive AIEgen nanoprobe for aggregation-enhanced multi-mode imaging and photothermal therapy of metastatic prostate cancer. Chinese Chemical Letters, 2025, 36(2): 109765-. doi: 10.1016/j.cclet.2024.109765

    9. [9]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    10. [10]

      Chu ChuYuancheng QinCailing NiJianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616

    11. [11]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    12. [12]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    13. [13]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    14. [14]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    15. [15]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    16. [16]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    17. [17]

      Hanying LiWee-Liat Ong . “Super-heterojunctioned” thermoelectric polymers. Chinese Chemical Letters, 2025, 36(2): 110523-. doi: 10.1016/j.cclet.2024.110523

    18. [18]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    19. [19]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    20. [20]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

Metrics
  • PDF Downloads(11)
  • Abstract views(1026)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return