Citation: Li Shen, Song Run-Jiang, Wang Dong-Hui, Tian Xue, Shao Xu-Sheng, Li Zhong. Azopyridine-imidacloprid derivatives as photoresponsive neonicotinoids[J]. Chinese Chemical Letters, ;2016, 27(5): 635-639. doi: 10.1016/j.cclet.2016.03.033 shu

Azopyridine-imidacloprid derivatives as photoresponsive neonicotinoids

  • Corresponding author: Shao Xu-Sheng, shaoxusheng@ecust.edu.cn
  • Received Date: 24 February 2016
    Revised Date: 15 March 2016
    Accepted Date: 18 March 2016
    Available Online: 31 May 2016

Figures(4)

  • A series of imidacloprid derivatives containing an azopyridine motif as a photoswitchable functional group were designed and synthesized. The new version of photoresponsive imidacloprid analogues showed improved solubility in comparison with their azobenzene analogues. 1.2 to 2-fold activity difference was observed for these azopyridine-imidacloprids against house fly (Musca domestica) and cowpea aphid (Aphis craccivora) upon irradiation.
  • 加载中
    1. [1]

      Gorostiza P., Isacoff E.. Optical switches and triggers for the manipulation of ion channels and pores[J]. Mol. Biosyst., 2007,3:686-704.

    2. [2]

      Hamon F., Djedaini-Pilard F., Barbot F., Len C.. Azobenzenes-synthesis and carbohydrate applications[J]. Tetrahedron, 2009,65:10105-10123.

    3. [3]

      Riggsbee C.W., Deiters A.. Recent advances in the photochemical control of protein function[J]. Trends Biotechnol., 2010,28:468-475.

    4. [4]

      Fehrentz T., Schonberger M., Trauner D.. Optochemical genetics[J]. Angew. Chem. Int. Ed, 2011,50:12156-12182.

    5. [5]

      Szymanski W., Beierle J.M., Kistemaker H.A., Velema W.A., Feringa B.L.. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches[J]. Chem. Rev., 2013,113:6114-6178.

    6. [6]

      Banghart M., Borges K., Isacoff E., Trauner D., Kramer R.H.. Light-activated ion channels for remote control of neuronal firing[J]. Nat. Neurosci., 2004,7:1381-1386.

    7. [7]

      Samanta S., Beharry A.A., Sadovski O.. Photoswitching azo compounds in vivo with red light[J]. J. Am. Chem. Soc., 2013,135:9777-9784.

    8. [8]

      Velema W.A., Szymanski W., Feringa B.L.. Photopharmacology:beyond proof of principle[J]. J. Am. Chem. Soc., 2014,136:2178-2191.

    9. [9]

      Broichhagen J., Frank J.A., Trauner D.. A roadmap to success in photopharmacology[J]. Acc. Chem. Res., 2015,48:1947-1960.

    10. [10]

      Velema W.A., van der Berg J.P., Hansen M.J.. Optical control of antibacterial activity[J]. Nat. Chem., 2013,5:924-928.

    11. [11]

      Yue L., Pawlowski M., Dellal S.S.. Robust photoregulation of GABAA receptors by allosteric modulation with a propofol analogue[J]. Nat. Commun, 2012,31095.

    12. [12]

      Stein M., Middendorp S.J., Carta V.. Azo-propofols:photochromic potentiators of GABA (A) receptors[J]. Angew. Chem. Int. Ed., 2012,51:10500-10504.

    13. [13]

      Broichhagen J., Schonberger M., Cork S.C.. Optical control of insulin release using a photoswitchable sulfonylurea[J]. Nat. Commun, 2014,55116.

    14. [14]

      Chen X., Wehle S., Kuzmanovic N.. Acetylcholinesterase inhibitors with photoswitchable inhibition of beta-amyloid aggregation[J]. ACS Chem. Neurosci., 2014,5:377-389.

    15. [15]

      Mourot A., Fehrentz T., Le Feuvre Y.. Rapid optical control of nociception with an ion-channel photoswitch[J]. Nat. Methods, 2012,9:396-402.

    16. [16]

      Velema W.A., van der Toorn M., Szymanski W., Feringa B.L.. Design, synthesis, and inhibitory activity of potent, photoswitchable mast cell activation inhibitors[J]. J Med. Chem., 2013,56:4456-4464.

    17. [17]

      Borowiak M., Nahaboo W., Reynders M.. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death[J]. Cell, 2015,162:403-411.

    18. [18]

      Xu Z., Shi L., Jiang D.. Azobenzene modified imidacloprid derivatives as photoswitchable insecticides:steering molecular activity in a controllable manner[J]. Sci. Rep, 2015,513962.

    19. [19]

      Garcia-Amoros J., Diaz-Lobo M., Nonell S., Velasco D.. Fastest thermal isomerization of an azobenzene for nanosecond photoswitching applications under physiological conditions[J]. Angew. Chem. Int. Ed., 2012,51:12820-12823.

    20. [20]

      Garcia-Amoros J., Gomez E., Valles E., Velasco D.. Photo-controllable electronic switches based on azopyridine derivatives[J]. Chem. Commun., 2012,48:9080-9082.

    21. [21]

      Jeschke P., Nauen R., Beck M.E.. Nicotinic acetylcholine receptor agonists:a milestone for modern crop protection[J]. Angew. Chem. Int. Ed., 2013,52:9464-9485.

    22. [22]

      Casida J.E.. Curious about pesticide action[J]. J. Agric. Food Chem., 2011,59:2762-2769.

    23. [23]

      Kagabu S.. Discovery of imidacloprid and further developments from strategic molecular designs[J]. J. Agric. Food Chem., 2011,59:2887-2896.

  • 加载中
    1. [1]

      Zhe LiPing-Zhao LiangLi XuFei-Yu YangTian-Bing RenLin YuanXia YinXiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190

Metrics
  • PDF Downloads(3)
  • Abstract views(700)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return