Citation: Jaggi Lal, Sushil K. Gupta, D. Thavaselvam, Dau D. Agarwal. Synthesis and pharmacological activity evaluation of curcumin derivatives[J]. Chinese Chemical Letters, ;2016, 27(7): 1067-1072. doi: 10.1016/j.cclet.2016.03.032 shu

Synthesis and pharmacological activity evaluation of curcumin derivatives

  • Corresponding author: Jaggi Lal, jaggitajagra@gmail.com
  • Received Date: 7 August 2015
    Revised Date: 22 January 2016
    Accepted Date: 24 February 2016
    Available Online: 31 July 2016

Figures(4)

  • Curcumin 3, 4-dihydropyrimidinones/thiones/imines have been synthesized using one-pot cyclocondensation of curcumin with substituted aromatic aldehydes and urea/thiourea/guanidine in the presence of chitosamine hydrochloride as a biodegradable and nontoxic catalyst under solvent-free microwave irradiation. The synthesized product was purified by crystallization from ethanol and the process does not involve any hazardous solvent. All the synthesized curcumin derivatives 4a-o were screened for antioxidant and anti-inflammatory activity. Biological activity data of the synthesized showed that most of the synthesized compounds exhibited greater antioxidant and anti-inflammatory activity than curcumin.
  • 加载中
    1. [1]

      J.K. Lin, M.H. Pan, S.Y. Lin-Shiau. Recent studies on the biofunctions and biotransformations of curcumin[J]. Biofactor, 2000,13(1-4):153-158. doi: 10.1002/biof.v13:1/4

    2. [2]

      K.S. Parvathy, P.S. Negi, P. Srinivas. Antioxidant, antimutagenic and antibacterial activities of curcumin-β-diglucoside[J]. Food Chem., 2009,115:265-271. doi: 10.1016/j.foodchem.2008.12.036

    3. [3]

      A. Apisariyakul, N. Vanittnakom, D. Buddasukh. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae)[J]. J. Ethnopharmacol., 1995,49:163-169. doi: 10.1016/0378-8741(95)01320-2

    4. [4]

      M. Hergenhahn, U. Soto, A. Weninger. , The chemopreventive compound curcumin is an efficient inhibitor of Epstein-Barr virus BZLF1 transcription in Raji DR-LUC cells[J]. Mol. Carcinogen., 2002,33:137-145. doi: 10.1002/mc.v33:3

    5. [5]

      A. Mazumdar, K. Raghavan, J. Weinstein, K.W. Kohn, Y. Pommer. Inhibition of human immunodeficiency virus type-1 integrase by curcumin[J]. Biochem. Pharmacol., 1995,49:1165-1170. doi: 10.1016/0006-2952(95)98514-A

    6. [6]

      P. Narlawar, M. Pickhardt, S. Leuchtenberger. , Curcumin-derived pyrazoles and isoxazoles: Swiss army knives or blunt tools for Alzheimer's Disease[J]. Chem. Med. Chem., 2008,3:165-172. doi: 10.1002/(ISSN)1860-7187

    7. [7]

      M.S. Wang, S. Boddapati, S. Emadi, M.R. Sierks. Curcumin reduces α-synuclein induced cytotoxicity in Parkinson's disease cell model[J]. BMC Neurosci., 2010,11:57-66. doi: 10.1186/1471-2202-11-57

    8. [8]

      J.L. Funk, J.N. Oyarzo, J.B. Frye. , Turmeric extracts containing curcuminoids prevent experimental rheumatoid arthritis[J]. J. Nat. Prod., 2006,69:351-355. doi: 10.1021/np050327j

    9. [9]

      M.E.M. Braga, P.F. Leal, J.E. Carvalho, M.A.A. Meireles. Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques[J]. J. Agric. Food Chem., 2003,51:6604-6611. doi: 10.1021/jf0345550

    10. [10]

      J.L. Arbiser, Curcumin and curcuminoid inhibition of angiogenesis, US Patent 667, 3843 (2004).

    11. [11]

      M. Kuroda, Y. Mimaki, T. Nishiyama. , Hypoglycemic effects of turmeric (Curcuma longa L. rhizomes) on genetically diabetic KK-Ay mice[J]. Biol. Pharm. Bull., 2005,28:937-939. doi: 10.1248/bpb.28.937

    12. [12]

      C.L.L. Saw, Y. Huang, A.N. Kong. Synergistic anti-inflammatory effects of low doses of curcumin in combination with polyunsaturated fatty acids: docosahexaenoic acid or eicosapentaenoic acid[J]. Biochem. Pharmacol., 2010,79:421-430. doi: 10.1016/j.bcp.2009.08.030

    13. [13]

      S. Mishra, K. Karmodiya, N. Surolia, A. Surolia. Synthesis and exploration of novel curcumin analogues, as anti-malarial agents[J]. Bioorg. Med. Chem., 2008,16:2894-2902. doi: 10.1016/j.bmc.2007.12.054

    14. [14]

      N. Arun, N. Nalini. Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rat[J]. Plant Foods Hum. Nutr., 2002,57:41-52. doi: 10.1023/A:1013106527829

    15. [15]

      C. Changtam, H.P. De-Koning, H. Ibrahim. , Curcuminoid analogs with potent activity against Trypanosoma and Leishmania species[J]. Eur. J. Med. Chem., 2010,45:941-956. doi: 10.1016/j.ejmech.2009.11.035

    16. [16]

      A.B. Hegge, T. Andersen, J.E. Melvik. , Formulation and bacterial phototoxicity of curcumin loaded alginate foams for wound treatment applications: studies on curcumin and curcuminoides XLⅡ[J]. J. Pharm. Sci., 2011,100:174-185. doi: 10.1002/jps.22263

    17. [17]

      A. Valentini, F. Conforti, A. Crispini. Synthesis, oxidant properties, and antitumoral effects of a heteroleptic palladium(Ⅱ) complex of curcumin on human prostate cancer cells[J]. J. Med. Chem., 2009,52:484-491. doi: 10.1021/jm801276a

    18. [18]

      S.K. Kulkarni, M.K. Bhutani, M. Bishnol. Antidepressant activity of curcumin: involvement of serotonin and dopamine system[J]. Psychopharmacology, 2008,201:435-442. doi: 10.1007/s00213-008-1300-y

    19. [19]

      M.M. Kim, W. Jeong, J. Kang, Y. Chong. Significant enhancement in radicalscavenging activity of curcuminoids conferred by acetoxy substituent at the central methylene carbon[J]. Bioorg. Med. Chem., 2011,19:3793-3800. doi: 10.1016/j.bmc.2011.04.055

    20. [20]

      A. Gomes, R. Das, S. Sarkhel. , Herbs and herbal constituents active against snake bite[J]. Ind. J. Exp. Biol., 2010,48:865-878.

    21. [21]

      D. Simoni, M. Rizzi, R. Rondanin. , Antitumor effects of curcumin and structurally beta-diketone modified analogs on multidrug resistant cancer cells[J]. Bioorg. Med. Chem. Lett., 2008,18:845-849. doi: 10.1016/j.bmcl.2007.11.021

    22. [22]

      T.P. Chaturvedi. Uses of turmeric in dentistry: an update[J]. Ind. J. Dental. Res., 2001,20:107-109.

    23. [23]

      L.R.C. Barclay, R. Melinda, M.R. Vinqvist. On the Antioxidant mechanism of curcumin: classical methods are needed to determine antioxidant mechanism and activity[J]. Org. Lett., 2000,18:2841-2843.

    24. [24]

      S.V. Jovanovic, C.W. Boone, S. Steenken, M. Trinoga, R.B. Kaskey. How curcumin works preferentially with water soluble antioxidants[J]. J. Am. Chem. Soc., 2001,123:3064-3068. doi: 10.1021/ja003823x

    25. [25]

      G. Litwinienko, K.U. Ingold. Abnormal solvent effects on hydrogen atom abstraction., 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer[J]. J. Org. Chem., 2004,69:5888-5896. doi: 10.1021/jo049254j

    26. [26]

      A. Goel, A.B. Kunnumakkara, B.B. Aggarwal. Curcumin as “curecumin”: from kitchen to clinic[J]. Biochem. Pharmacol., 2008,75:787-809. doi: 10.1016/j.bcp.2007.08.016

    27. [27]

      G. Aridoss, Y.T. Jeong. A convenient one-pot Biginelli reaction catalyzed by Y(OAc)3: an improved protocol for the synthesis of, 3, 4-dihydropyrimidin-2(1H)-ones and their sulfur analogues[J]. Bull. Korean Chem. Soc., 2010,31:863-868. doi: 10.5012/bkcs.2010.31.04.863

    28. [28]

      R. Apak, K. Guclu, M. Ozyurek, S.E. Karademir. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method[J]. J. Agric. Food Chem., 2004,52:7970-7981. doi: 10.1021/jf048741x

    29. [29]

      I.F. Benzie, J.J. Strain. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay[J]. Anal. Biochem., 1993,239:70-76.

    30. [30]

      B. Bozin, N. Mimica-Dukic, N. Simin, G. Anackov. Characterization of the volatile composition of essential oils of some Lamiaceae species and the antimicrobial and antioxidant activities of the entire oils[J]. J. Agric. Food Chem., 2006,54:1822-1828. doi: 10.1021/jf051922u

    31. [31]

      C.A. Winter, E.A. Risley, G.W. Nuss. Carrageenan-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs[J]. Proc. Soc. Exp. Biol. Med., 1962,111:545-547.

    32. [32]

      J. Lal, S.K. Gupta, D. Thavaselvam, D .D. Agarwal, Design, synthesis, synergistic antimicrobial activity and cytotoxicity of 4-aryl substituted 3, 4-dihydropyrimidinones of curcumin[J]. Bioorg. Med. Chem. Lett., 2012,22:2872-2876. doi: 10.1016/j.bmcl.2012.02.056

  • 加载中
    1. [1]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    2. [2]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    3. [3]

      Xiaoyao MaJinling ZhangGe FangHe GaoJie GaoLi FuYuanyuan HouGang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823

    4. [4]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    5. [5]

      Xiongbo SongJinwen XiaoJuan WuLi SunLong Chen . Decellularized amniotic membrane promotes the anti-inflammatory response of macrophages via PI3K/AKT/HIF-1α pathway. Chinese Chemical Letters, 2025, 36(1): 109844-. doi: 10.1016/j.cclet.2024.109844

    6. [6]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    7. [7]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    8. [8]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    9. [9]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    10. [10]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    11. [11]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    12. [12]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    13. [13]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    14. [14]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    15. [15]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    16. [16]

      Jingting WangYuanyuan ChenLinlin HanShasha XiaXingyao ZhangPeng XueYuejun KangJian MingZhigang Xu . Microenvironment responsive pod-structured astaxanthin nanocarrier for ameliorating inflammatory bowel disease. Chinese Chemical Letters, 2024, 35(7): 109029-. doi: 10.1016/j.cclet.2023.109029

    17. [17]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    18. [18]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    19. [19]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    20. [20]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

Metrics
  • PDF Downloads(6)
  • Abstract views(583)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return