Citation: Yi Shan-Li, Li Mei-Chao, Hu Xin-Quan, Mo Wei-Min, Shen Zhen-Lu. An efficient and convenient method for the preparation of disulfides from thiols using oxygen as oxidant catalyzed by tert-butyl nitrite[J]. Chinese Chemical Letters, ;2016, 27(9): 1505-1508. doi: 10.1016/j.cclet.2016.03.016 shu

An efficient and convenient method for the preparation of disulfides from thiols using oxygen as oxidant catalyzed by tert-butyl nitrite

  • Corresponding author: Shen Zhen-Lu, zhenlushen@zjut.edu.cn
  • Received Date: 12 January 2016
    Revised Date: 2 February 2016
    Accepted Date: 2 March 2016
    Available Online: 19 September 2016

Figures(1)

  • An efficient and convenient tert-butyl nitrite-catalyzed selective aerobic oxidation of thiols has been developed. Under the optimal reaction conditions, a number of thiol derivatives including aromatic thiols, heteroaromatic thiols and aliphatic thiols can be converted into their corresponding disulfides in good to excellent yields.
  • 加载中
    1. [1]

      Liang G.G., M.C.Liu , Chen J.X.. NBS-promoted sulfenylation of sulfinateswith disulfides leading to unsymmetrical or symmetrical thiosulfonates[J]. Chin. J. Chem., 2012,30:1611-1616. doi: 10.1002/cjoc.v30.7

    2. [2]

      (a) D. Huang, J. Chen, W. Dan, et al., A metal-free sulfenylation and bromosulfenylation of indoles:controllable synthesis of 3-arylthioindoles and 2-bromo-3-arylthioindoles, Adv. Synth. Catal. 354(2012) 2123-2128;
      (b) W. Ge, Y. Wei, Iodine-catalyzed oxidative system for 3-sulfenylation of indoles with disulfides using DMSO as oxidant under ambient conditions in dimethyl carbonate, Green Chem. 14(2012) 2066-2070.

    3. [3]

      Srogl J., Hyvl J., Revesz A.. Mechanistic insights into a copper-disulfide interaction in oxidation of imines by disulfides[J]. Chem. Commun., 2009:3463-3465.  

    4. [4]

      (a) G. Saito, J.A. Swanson, K.-D. Lee, Drug delivery strategy utilizing conjugation via reversible disulfide linkages:role and site of cellular reducing activities, Adv. Drug Deliv. Rev. 55(2003) 199-215;
      (b) M.C. Fournie-Zaluski, P. Coric, S. Turcaud, et al., Potent and systemically active aminopeptidase N inhibitors designed from active-site investigation, J. Med. Chem. 35(1992) 1259-1266.

    5. [5]

      (a) K. Ramadas, N. Srinivasan, Sodium chlorite-yet another oxidant for thiols to disulphides, Synth. Commun. 25(1995) 227-234;
      (b) A. Leitao, C. Costa, A.Rodrigues, Studieson theimpregnationstep ofthe merox process, Chem. Eng. Sci. 42(1987) 2291-2299.

    6. [6]

      (a) Y. Liu, Y. Zhang, Temperature-controlled selective reduction of arenesulfonyl chlorides promoted by samarium metal in DMF, Tetrahedron Lett. 44(2003) 4291-4294;
      (b) G.W. Kabalka, M.S. Reddy, M.L. Yao, Synthesis of diaryl disulfides via the reductive coupling of arylsulfonyl chlorides, Tetrahedron Lett. 50(2009) 7340-7342.

    7. [7]

      (a) F. Barba, F. Ranz, B. Batanero, Electrochemical transformation of diazonium salts into diaryl disulfides, Tetrahedron Lett. 50(2009) 6798-6799;
      (b) H. Firouzabadi, N. Iranpoor, A. Samadi, One-pot synthesis ofaryl alkyl thioethers and diaryl disulfides using carbon disulfide as a sulfur surrogate in the presence of diethylamine catalyzed by copper(I) iodide in polyethylene glycol (PEG200), Tetrahedron Lett. 55(2014) 1212-1217.

    8. [8]

      Sun J., Xia E.Y., Wu Q.. Synthesis of ammonium S-S bond linked dipyridinedionates via four-component reactions of cyanoacetamide, aldehyde, amine and 1, 3-thiazolidinedione[J]. Tetrahedron, 2010,66:7794-7798. doi: 10.1016/j.tet.2010.07.051

    9. [9]

      M.Soleiman-Beigi, F.Mohammadi. A novelcopper-catalyzed, one-pot synthesisof symmetric organic disulfides from alkyl and aryl halides:potassium 5-methyl-1, 3, 4-oxadiazole-2-thiolate as a novel sulfur transfer reagent[J]. Tetrahedron Lett., 2012,53:7028-7030. doi: 10.1016/j.tetlet.2012.10.016

    10. [10]

      Khalili D.. Graphene oxide-assisted one-pot and odorless synthesis of symmetrical disulfides using primary and secondary alkyl halides (Tosylates) and thiourea as sulfur source reagent, Phosphorus[J]. Sulfur Silicon Realt. Elem., 2015,190:1727-1734. doi: 10.1080/10426507.2014.999069

    11. [11]

      (a) J.T. Yu, H. Guo, Y. Yi, et al., The chan-lam reaction of chalcogen elements leading to aryl chalcogenides, Adv. Synth. Catal. 356(2014) 749-752;
      (b) Z. Li, F. Ke, H. Deng, et al., Synthesis of disulfides and diselenides by coppercatalyzed coupling reactions in water, Org. Biomol. Chem. 11(2013) 2943-2946.

    12. [12]

      Soleiman-Beigi M., Hemmati M.. An efficient, one-pot and CuCl-catalyzed route to the synthesis of symmetric organic disulfides via domino reactions of thioacetamide and aryl (alkyl) halides[J]. Appl. Organometal. Chem., 2013,27:734-736. doi: 10.1002/aoc.v27.12

    13. [13]

      Mokhtari B., Kiasat A.R., Monjezi J.. Imidazole promoted highly efficient largescale thiol-free synthesis of symmetrical disulfides in aqueous media, Phosphorus[J]. Sulfur Silicon Realt. Elem., 2015,190:1573-1579. doi: 10.1080/10426507.2014.1003643

    14. [14]

      Christoforou A., Nicolaou G., Elemes Y.. N-Phenyltriazolinedione as an efficient, selective, and reusable reagent for the oxidation of thiols to disulfides[J]. Tetrahedron Lett., 2006,47:9211-9213. doi: 10.1016/j.tetlet.2006.10.134

    15. [15]

      Shirini F., Zolfigol M.A., Abri A.R.. Fe(NO3)3·H2O/Fe(HSO4)3:an efficient reagent system for the oxidation of alcohols, thiols and sulfides in the absence of solvent[J]. Chin. Chem. Lett., 2008,19:51-54. doi: 10.1016/j.cclet.2007.11.023

    16. [16]

      Vandavasi J.K., Hu W.P., Chen C.Y.. Efficient synthesis of unsymmetrical disulfides[J]. Tetrahedron, 2011,67:8895-8901. doi: 10.1016/j.tet.2011.09.071

    17. [17]

      Kazem M.M., Shahriare G., Soroush Z.. Tributylammonium halochromates/silica gel:simple reagents for oxidative coupling of thiols to symmetrical disulfides[J]. Chin. J. Chem., 2010,28:2199-2203. doi: 10.1002/cjoc.201090363

    18. [18]

      Banfield S.C., Omori A.T., Leisch H.. Unexpected reactivity of the burgess reagent with thiols:synthesis of symmetrical disulfides[J]. J. Org. Chem., 2007,72:4989-4992. doi: 10.1021/jo070099t

    19. [19]

      Nair V., Augustine A.. Novel synthesis of 2-arylbenzothiazoles mediated by ceric ammonium nitrate (CAN):a rebuttal[J]. Org. Lett., 2003,5:543-544. doi: 10.1021/ol027452w

    20. [20]

      Leino R., Lonnqvist J.E.. A very simple method for the preparation of symmetrical disulfides[J]. Tetrahedron Lett., 2004,45:8489-8491. doi: 10.1016/j.tetlet.2004.09.100

    21. [21]

      Patel S., Mishra B.K.. Cetyltrimethylammonium dichromate:a mild oxidant for coupling amines and thiols[J]. Tetrahedron Lett., 2004,45:1371-1372. doi: 10.1016/j.tetlet.2003.12.068

    22. [22]

      Joshi G., Bhadra S., Ghosh S.. Making full use of the oxidizing equivalents in bromate in the selective oxidation of thiols, sulfides, and benzylic/secondary alcohols into disulfides, sulfoxides, and aldehydes/ketones[J]. Ind. Eng. Chem. Res., 2010,49:1236-1241. doi: 10.1021/ie901426t

    23. [23]

      Iranpoor N., Firouzabadi H., Pourali A.R.. Dinitrogen tetroxide supported on polyvinylpyrrolidone (PVP-N2O4):a new nitrosating and coupling agent for thiols and a selective oxidant for sulfides and disulfides[J]. Tetrahedron, 2002,58:5179-5184. doi: 10.1016/S0040-4020(02)00390-3

    24. [24]

      (a) K.Y.D. Tan, J.W. Kee, W.Y. Fan, CpMn(CO)3-catalyzed photoconversion of thiols into disulfides and dihydrogen, Organometallics 29(2010) 4459-4463;
      (b) A. Talla, B. Driessen, N.J.W. Straathof, et al., Metal-free photocatalytic aerobic oxidation of thiols to disulfides in batch and continuous-flow, Adv. Synth. Catal. 357(2015) 2180-2186;
      (c) P. Kumar, G. Singh, D. Tripathi, et al., Visible light driven photocatalytic oxidation of thiols to disulfides using iron phthalocyanine immobilized on graphene oxide as a catalyst under alkali free conditions, RSC Adv. 4(2014) 50331-50337;
      (d) X.B. Li, Z.J. Li, Y.J. Gao, et al., Mechanistic insights into the interface-directed transformation of thiols into disulfides and molecular hydrogen by visible-light irradiation of quantum dots, Angew. Chem. Int. Ed. 53(2014) 2085-2089;
      (e) S.S. Shah, S. Karthik, N.D.P. Singh, Vis/Nir light driven mild and clean synthesis of disulfides in the presence of Cu2(OH)PO4 under aerobic conditions, RSC Adv. 5(2015) 45416-45419;
      (f) M. Oba, K. Tanaka, K. Nishiyama, et al., Aerobic oxidation of thiols to disulfides catalyzed by diaryl tellurides under photosensitized conditions, J. Org. chem. 76(2011) 4173-4177.

    25. [25]

      (a) A. Shojaei, M.A. Rezvani, M. Heravi, H5PV2Mo10O40 as an efficient catalyst for the oxidation of thiols to the corresponding disulfides using hydrogen peroxide as the oxidant, J. Serb. Chem. Soc. 76(2011) 955-963;
      (b) A. Ghorbani-Choghamarani, M. Nikoorazm, G. Azadi, In situ generated hypoiodous acid in an efficient and heterogeneous catalytic system for the homo-oxidative coupling of thiols, J. Serb. Chem. Soc. 78(2013) 173-178;
      (c) F. Rajabi, T. Kakeshpour, M.R. Saidi, Supported iron oxide nanoparticles:recoverable and efficient catalyst for oxidative S-S coupling of thiols to disulfides, Catal. Commun. 40(2013) 13-17.

    26. [26]

      (a) P.J. Chai, Y.S. Li, C.X. Tan, An efficient and convenient method for preparation of disulfides from thiols using air as oxidant catalyzed by Co-salophen, Chin. Chem. Lett. 22(2011) 1403-1406;
      (b) A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Aerobic oxidation of thiols to disulfides using iron metal-organic frameworks as solid redox catalysts, Chem. Commun. 46(2010) 6476-6478;
      (c) A. Corma, T. Rodenas, M.J. Sabater, Aerobic oxidation of thiols to disulfides by heterogeneous gold catalysts, Chem. Sci. 3(2012) 398-404;
      (d) T.V. Rao, B. Sain, P.S. Murthy, et al., Iron (Ⅲ)-ethylenediaminetetraacetic acid mediated oxidation of thiols to disulfides with molecular oxygen, J. Chem. Res. (1997) 300-301;
      (e) R. Kumar, N. Sharma, U.K. Sharma, et al., First metal-and base-free selective oxidative coupling of thiols in neat ionic liquids:NMR probed "ambiphilic" character of neutral[Hmim]Br towards atom-efficient synthesis of disulfides, Adv. Synth. Catal. 354(2012) 2107-2112;
      (f) G. Singh, P.K. Khatri, S.K. Ganguly, et al., Magnetic silica beads functionalized with cobalt phthalocyanine for the oxidation of mercaptans in an alkali free aqueous medium, RSC Adv. 4(2014) 29124-29130;
      (g) A. Shard, R. Kumar, N. Sharma, et al., Amino acid and water-driven tunable green protocol to access S-S/C-S bonds via aerobic oxidative coupling and hydrothiolation, RSC Adv. 4(2014) 33399-33407;
      (h) P. Das, S. Ray, A. Bhaumik, et al., Cubic Ag2O nanoparticle incorporated mesoporous silica with large bottle-neck like mesopores for the aerobic oxidative synthesis of disulfide, RSC Adv. 5(2015) 6323-6331;
      (i) S. Thurow, V.A. Pereira, D.M. Martinez, et al., Base-free oxidation of thiols to disulfides using selenium ionic liquid, Tetrahedron Lett. 52(2011) 640-643;
      (j) D. Singh, F.Z. Galetto, L.C. Soares, et al., Metal-free air oxidation of thiols in recyclable ionic liquid:a simple and efficient method for the synthesis of disulfides, Eur. J. Org. Chem. (2010) 2661-2665;
      (k) N. Iranpoor, H. Firouzabadi, A.R. Pourali, Dinitrogen tetroxide impregnated charcoal (N2O4/Charcoal):selective oxidation of thiols to disulfides or thiosulfonates, Phosphorus Sulfur Silicon Realt. Elem. 181(2006) 473-479;
      (l) A. Hadi, S.H. Allah, I. Nasser, Iron(Ⅲ) trifluoroacetate:chemoselective and recyclable lewis and transthioacetalization of carbonyl compounds and aerobic coupling of thiols, Chin. J. Chem. 26(2008) 2086-2092.

    27. [27]

      Csende F.. Alkyl nitrites as valuable reagents in organic synthesis[J]. Mini-Rev. Org. Chem., 2015,12:127-148. doi: 10.2174/1570193X1202150225152405

    28. [28]

      (a) J.Q. Ma, Z.M. Hu, M.C. Li, et al., DDQ/tert-Butyl nitrite-catalyzed aerobic oxidation of diarylmethane sp3 C-H bonds, Tetrahedron 71(2015) 6733-6739;
      (b) Z.L. Shen, M. Chen, T.T. Fang, et al., Transformation of ethers into aldehydes or ketones:acatalytic aerobic deprotection/oxidation pathway, Tetrahedron Lett. 56(2013) 2768-2772;
      (c) Z.L. Shen, L.L. Sheng, X.C. Zhang, et al., Aerobic oxidative deprotection of benzyl-type ethers under atmospheric pressure catalyzed by 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ)/tert-butyl nitrite, Tetrahedron Lett. 54(2013) 1579-1583;
      (d) C.B. Qiu, L.Q. Jin, Z.L. Huang, et al., Symbiotic catalysis relay:molecular oxygen activation catalyzed by multiple small molecules at ambient temperature and its mechanism, ChemCatChem 4(2012) 76-80;
      (e) Z.L. Shen, J.L. Dai, J. Xiong, et al., 2, 3-Dichloro-5, 6-dicyano-1, 4-benzoquinone (DDQ)/tert-butyl nitrite/oxygen:a versatile catalytic oxidation system, Adv. Synth. Catal. 353(2011) 3031-3038;
      (f) X.J. He, Z.L. Shen, W.M. Mo, et al., TEMPO-tert-butyl nitrite:an efficient catalytic system for aerobic oxidation of alcohols, Adv. Synth. Catal. 351(2009) 89-92.

    29. [29]

      Bellale E.V., Chaudhari M.K., Akamanchi K.G.. A simple, fast and chemoselective method for the preparation of arylthiols[J]. Synthesis, 2009:3211-3213.  

    30. [30]

      (a) A. Keszler, Y.H. Zhang, N. Hogg, Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein:How are S-nitrosothiols formed? Free Radical Biol. Med. 48(2010) 55-64;
      (b) M.A. Zolfigol, Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions, Tetrahedron 57(2001) 9509-9511;
      (c) L. Grossi, P.C. Montevecchi, S-nitrosocysteine and cystine from reaction of cysteinewithnitrousacid.AkineticInvestigation, J.Org.Chem.67(2002)8625-8630.

  • 加载中
    1. [1]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    2. [2]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    3. [3]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    4. [4]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    5. [5]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    6. [6]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    7. [7]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    8. [8]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    9. [9]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    10. [10]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    11. [11]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    12. [12]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    13. [13]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    14. [14]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    15. [15]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    16. [16]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    17. [17]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    18. [18]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

    19. [19]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    20. [20]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

Metrics
  • PDF Downloads(4)
  • Abstract views(567)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return