Citation: Wei Zhi-Dong, Wang Rui. Hierarchical BiOBr microspheres with oxygen vacancies synthesized via reactable ionic liquids for dyes removal[J]. Chinese Chemical Letters, ;2016, 27(5): 769-772. doi: 10.1016/j.cclet.2016.03.013 shu

Hierarchical BiOBr microspheres with oxygen vacancies synthesized via reactable ionic liquids for dyes removal

  • Corresponding author: Wang Rui, gqyan@126.com
  • Received Date: 18 February 2016
    Revised Date: 4 March 2016
    Accepted Date: 9 March 2016
    Available Online: 16 May 2016

Figures(6)

  • Hierarchical BiOBr microspheres with oxygen vacancies, which can be used for the dyes removal, have been synthesized successfully in the presence of different kinds of ionic liquids. It was revealed that BiOBr prepared by the ionic liquids with short chain length exhibited higher photocatalytic activity in the degradation of methyl orange (MO) under visible light. The experimental results showed that the phenomenon of the photocatalytic degradation of MO can be explained by the photoluminescence spectra.
  • 加载中
    1. [1]

      Fujishima A., Honda K.. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238:37-38.

    2. [2]

      Guo S.Y., Han S., Mao H.F.. Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals:The role of microporous amorphous/crystalline composite structure[J]. J. Power Sources, 2014,245:979-985.

    3. [3]

      Song Z., Li Q., Gao L.. Preparation and properties of nano-TiO2 powders[J]. Mater. Sci. Technol., 1997,13:321-323.

    4. [4]

      Wei Z.D., Wang R.. Preparation and photocatalytic activities of nanocomposites of MCNTs/TiO2 and MCNTs-phosphotungstic acid/TiO2[J]. Petroleum and Coal, 2014,56:475-479.

    5. [5]

      Zhang D., Li J., Wang Q.G., Wu Q.G.. High {001} facets dominated BiOBr lamellas:facile hydrolysis preparation and selective visible-light photocatalytic activity[J]. J. Mater. Chem. A, 2013,1:8622-8629.

    6. [6]

      Fang Y.F., Huang Y.P., Yang J., Wang P., Cheng G.W.. Unique ability of BiOBr to decarboxylate D-Glu and D-MeAsp in the photocatalytic degradation of microcystin-LR in water[J]. Environ. Sci. Technol., 2011,45:1593-1600.

    7. [7]

      Zhang X., Ai Z., Jia F., Zhang L.. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microsheres[J]. J. Phys. Chem. C, 2008,112:747-753.

    8. [8]

      Deng Z.T., Chen D., Peng B., Tang F.Q.. From bulk metal Bi to two-dimensional wellcrystallized BiOX (X=Cl, Br) micro- and nanostructures:synthesis and characterization[J]. Cryst. Growth Des., 2008,8:2995-3003.

    9. [9]

      Wang J.W., Li Y.D.. Synthesis of single-crystalline nanobelts of ternary bismuth oxide bromide with different compositions[J]. Chem. Commun., 2003,18:2320-2321.

    10. [10]

      (a) J. Zhang, F.J. Shi, J. Lin, et al., Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst, Chem. Mater. 20(2008) 2937-2941;
      (b) Z. Jiang, F. Yang, G.D. Yang, et al., The hydrothermal synthesis of BiOBr flakes for visible-light-responsive photocatalytic degradation of methyl orange, J. Photochem. Photobiol. A 212(2010) 8-13.

    11. [11]

      Feng Y.C., Li L., Li J.W., Wang J.F., Liu L.. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene[J]. J. Hazard. Mater., 2011,192:538-544.

    12. [12]

      Ai Z.H., Ho W.K., Lee S.C., Zhang L.Z.. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environ. Sci. Technol., 2009,43:4143-4150.

    13. [13]

      Zhang D.Q., Wen M.C., Jiang B., Li G.S., Yu J.C.. Ionothermal synthesis of hierarchical BiOBr microspheres for water treatment[J]. J. Hazard. Mater. 211-, 2012,212:104-111.

    14. [14]

      Wang Y.N., Deng K.J., Zhang L.Z.. Visible light photocatalysis of BiOI and its photocatalytic activity enhancement by in situ ionic liquid modification[J]. J. Phys. Chem. C, 2011,115:14300-14308.

    15. [15]

      Caruso F.. Nanoengineering of particle surfaces[J]. Adv. Mater., 2001,13:11-22.

    16. [16]

      R. Katoh, M. Hara, S. Tsuzuki, Ion pair formation in[bmim]I ionic liquids, J. Phys. Chem. B 112(2008) 15426-15430.

    17. [17]

      Guo S.J., Dong S.J., Wang E.K.. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker[J]. Adv. Mater., 2010,22:1269-1272.

    18. [18]

      Mao D.J., Lü X.M., Jiang Z.F.. Ionic liquid-assisted hydrothermal synthesis of square BiOBr nanoplates with highly efficient photocatalytic activity[J]. Mater. Lett., 2014,118:154-157.

    19. [19]

      Khatri O.P., Adachi K., Murase K.. Self-assembly of ionic liquid (BMI-PF6)-stabilized gold nanoparticles on a silicon surface:chemical and structural aspects[J]. Langmuir, 2008,24:7785-7792.

    20. [20]

      Xia J.X., Yin S., Li H.M.. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid[J]. Dalton Trans., 2011,40:5249-5258.

    21. [21]

      Jing L.Q., Xin B.F., Wang D.J.. Relationships between photoluminescence performance and photocatalytic activity of ZnO and TiO2 nanoparticles[J]. Chem. J. Chin. Univ., 2005,26:111-115.

    22. [22]

      Li H., Shang J., Ai Z.H., Zhang L.Z.. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. J. Am. Chem. Soc., 2015,137:6393-6399.

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    4. [4]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    5. [5]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    6. [6]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    7. [7]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    8. [8]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    9. [9]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    10. [10]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    11. [11]

      Chao-Long ChenRong ChenLa-Sheng LongLan-Sun ZhengXiang-Jian Kong . Anchoring heterometallic cluster on P-doped carbon nitride for efficient photocatalytic nitrogen fixation in water and air ambient. Chinese Chemical Letters, 2024, 35(4): 108795-. doi: 10.1016/j.cclet.2023.108795

    12. [12]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    13. [13]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    14. [14]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    15. [15]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    16. [16]

      Ming-Zhen LiYang ZhangKun LiYa-Nan ShangYi-Zhen ZhangYu-Jiao KanZhi-Yang JiaoYu-Yuan HanXiao-Qiang CaoIn situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885

    17. [17]

      Xingmin ChenYunyun WuYao TangPeishen LiShuai GaoQiang WangWen LiuSihui Zhan . Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chinese Chemical Letters, 2024, 35(7): 109245-. doi: 10.1016/j.cclet.2023.109245

    18. [18]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    19. [19]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(2)
  • Abstract views(562)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return