Citation: Wu Ting, Wang Hai-Ting, Shen Bo, Du Yi-Ping, Wang Xuan, Wang Zhen-Ping, Zhang Chuan-Jing, Miu Wen-Bin. Determination of primary aromatic amines using immobilized nanoparticles based surface-enhanced Raman spectroscopy[J]. Chinese Chemical Letters, ;2016, 27(5): 745-748. doi: 10.1016/j.cclet.2016.01.059 shu

Determination of primary aromatic amines using immobilized nanoparticles based surface-enhanced Raman spectroscopy

  • Corresponding author: Wu Ting, wu_ting@ecust.edu.cn
  • Received Date: 8 May 2015
    Revised Date: 18 September 2015
    Accepted Date: 11 February 2016
    Available Online: 11 May 2016

Figures(2)

  • Primary aromatic amines (PAAs) are substances with toxicity and suspected human carcinogenicity. A facile method for highly sensitive detection of PAAs using surface-enhanced Raman spectroscopy (SERS) is reported. The immobilization of Au nanoparticles (AuNPs) on the glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) materials makes the substrate a closely packed but not aggregated Au NP arrays which provides a prominent SERS enhancement. Four PAAs with different substituent groups, namely, p-toluidine, p-nitroaniline, benzidine and 4,4-methylene-bis-(2-chloroaniline) have been successfully identified and quantified. High sensitivity and good linear relationship between SERS signals and concentrations of PAAs are obtained for all four PAAs.
  • 加载中
    1. [1]

      Turesky R.J., Le Marchand L.. Metabolismand biomarkers of heterocyclic aromatic amines in molecular epidemiology studies:lessons learned from aromatic amines[J]. Chem. Res. Toxicol., 2011,24:1169-1214.

    2. [2]

      Silar P., Dairou J., Cocaign A.. Fungi as a promising tool for bioremediation of soils contaminated with aromatic amines, a major class of pollutants[J]. Nat. Rev. Microbiol., 2011,9477.

    3. [3]

      Fan Y.C., Hu Z.L., Chen M.L., Tu C.S., Zhu Y.. Ionic liquid based dispersive liquidliquid microextraction of aromatic amines in water samples[J]. Chin. Chem. Lett., 2008,19:985-987.

    4. [4]

      Centers for Disease Control and Prevention (CDC), NIOSH pocket guide to chemical hazards, GA, 1992. <http://www.cdc.gov/niosh/npg/nengapdx.html. >

    5. [5]

      International Agency for Research on Cancer (IARC), IARC monographs on the evaluation of carcinogenic risks to humans, Lyon, 2015. < http://monographs.iarc.fr/ENG/Classification/index.php. >

    6. [6]

      Schubert J., Kappenstein O., Luch A., Schulz T.G.. Analysis of primary aromatic amines in the mainstream waterpipe smoke using liquid chromatography-electrospray ionization tandem mass spectrometry[J]. J. Chromatogr. A, 2011,1218:5628-5637.

    7. [7]

      Jurado-Sánchez B., Ballesteros E., Gallego M.. Gas chromatographic determination of N-nitrosamines, aromatic amines, and melamine in milk and dairy products using an automatic solid-phase extraction system[J]. J. Agric. Food Chem., 2011,59:7519-7520.

    8. [8]

      Aznar M., Canellas E., Nerín C.. Quantitative determination of 22 primary aromatic amines by cation-exchange solid-phase extraction and liquid chromatography-mass spectrometry[J]. J. Chromatogr. A, 2009,1216:5176-5181.

    9. [9]

      Brede C., Skjevrak I., Herikstad H.. Determination of primary aromatic amines in water food simulant using solid-phase analytical derivatization followed by gas chromatography coupled with mass spectrometry[J]. J. Chromatogr. A, 2003,983:35-42.

    10. [10]

      Krishna R.R., Sastry C.S.P.. A new spectrophotometric method for the determination of primary aromatic amines[J]. Talanta, 1979,26:861-865.

    11. [11]

      Stewart J.T., Shaw T.D., Ray A.B.. Spectrophotometric determination of primary aromatic amines with 9-chloroacridine[J]. Anal. Chem., 1969,41:360-362.

    12. [12]

      Mortensen S.K., Trier X.T., Foverskov A., Petersen J.H.. Specific determination of 20 primary aromatic amines in aqueous food simulants by liquid chromatography-electrospray ionization-tandem mass spectrometry[J]. J. Chromatogr. A, 2005,1091:40-50.

    13. [13]

      Pezo D., Fedeli M., Bosetti O., Nerín C.. Aromatic amines from polyurethane adhesives in food packaging:the challenge of identification and pattern recognition using quadrupole-time of flight-mass spectrometry[J]. Anal. Chim. Acta, 2012,756:49-59.

    14. [14]

      Akbarian F., Dunn B.S., Zink J.I.. Surface-enhanced Raman spectroscopy using photodeposited gold particles in porous sol-gel silicates[J]. J. Phys. Chem., 1995,99:3892-3894.

    15. [15]

      Iancu V., Baia L., Tarcea N., Popp J., Baia M.. Towards TiO2-Ag porous nanocomposites based SERS sensors for chemical pollutant detection[J]. J. Mol. Struct., 2014,1073:51-57.

    16. [16]

      Zou X.X., Silva R., Huang X.X., Al-Sharab J.F., Asefa T.. A self-cleaning porous TiO2-Ag core-shell nanocomposite material for surface-enhanced Raman scattering[J]. Chem. Commun., 2013,49:382-384.

    17. [17]

      Li Q.Q., Du Y.P., Xu Y.. Rapid and sensitive detection of pesticides by surfaceenhanced Raman spectroscopy technique based on glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) porous material[J]. Chin. Chem. Lett., 2013,24:332-334.

    18. [18]

      Svec F., Frechet J.M.J.. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media[J]. Anal. Chem., 1992,64:820-822.

    19. [19]

      Yang C.L., Wei Y.L., Zhang Q.H.. Preparation and evaluation of a large-volume radial flow monolithic column[J]. Talanta, 2005,66:472-478.

    20. [20]

      Grabar K.C., Freeman R.G., Hommer M.B., Natan M.J.. Preparation and characterization of Au colloid monolayers[J]. Anal. Chem., 1995,67:735-743.

    21. [21]

      Karnan M., Balachandran V., Murugan M.. FT-IR, Raman and DFT study of 5-chloro-4-nitro-o-toluidine and NBO analysis with other halogen (Br, F) substitution[J]. J. Mol. Struct., 2013,1039:197-206.

    22. [22]

      Bilal S., Shah A.U.H.A., Holze R.. Raman spectroelectrochemical studies of copolymers of o-phenylenediamine and o-toluidine[J]. Vib. Spectrosc., 2010,53:279-284.

    23. [23]

      Tanaka T., Nakajima A., Watanabe A., Ohno T., Ozaki Y.. Surface-enhanced Raman scattering spectroscopy and density functional theory calculation studies on adsorption of o-, m-, and p-nitroaniline on silver and gold colloid[J]. J. Mol. Struct. 661-, 2003,662:437-449.

    24. [24]

      Goodarzil M., Malik A.K., Goudarzi N.. Simultaneous spectrophotometric determination of nitroanilines using genetic-algorithm-based wavelength selection in principal component-artificial neural network[J]. Afr. J. Pharm. Pharmacol., 2012,6:135-143.

    25. [25]

      Cavallaro A., Piangerelli V., Nerini F., Cavalli S., Reschiotto C.. Selective determination of aromatic amines in water samples by capillary zone electrophoresis and solid-phase extraction[J]. J. Chromatogr. A, 1995,709:361-366.

    26. [26]

      Sutthivaiyakit P., Achatz S., Lintelmann J.. LC-MS/MS method for the confirmatory determination of aromatic amines and its application in textile analysis[J]. Anal. Bioanal. Chem., 2005,381:268-276.

    27. [27]

      Liu X.J., Chen X.W., Yang S., Wang X.D.. Comparison of continuous-flow microextraction and static liquid-phase microextraction for the determination of ptoluldine in Chlamydomonas reinhardtii[J]. J. Sep. Sci., 2007,30:2506-2512.

    28. [28]

      Ashori A., Sheibani A.. Homogeneous liquid-liquid extraction coupled to ion mobility spectrometry for the determination of p-toluidine in water samples[J]. Bull. Environ. Contam. Toxicol., 2015,94:474-478.

    29. [29]

      Xiao P.F., Bao C.L., Jia Q.. Determination of nitroanilines in hair dye using polymer monolith microextraction coupled with HPLC[J]. J. Sep. Sci., 2011,34:675-680.

    30. [30]

      Zhang L., You J.M., Ping G.C.. Analysis of aromatic amines by high-performance liquid chromatography with pre-column derivatization by 2-(9-carbazole)-ethyl-chloroformate[J]. Anal. Chim. Acta, 2003,494:141-147.

    31. [31]

      Akyüz M., Ata S.. Simultaneous determination of aliphatic and aromatic amines in water and sediment samples by ion-pair extraction and gas chromatographymass spectrometry[J]. J. Chromatogr. A, 2006,1129:88-94.

  • 加载中
    1. [1]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    2. [2]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    3. [3]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    4. [4]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    5. [5]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    8. [8]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    9. [9]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    10. [10]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    11. [11]

      Feihu WuGengwen ChenKaitao LaiShiqing ZhangYingchao LiuRuijian LuoXiaocong WangPinzhi CaoYi YeJiarong LianJunle QuZhigang YangXiaojun Peng . Non-specific/specific SERS spectra concatenation for precise bacteria classifications with few samples using a residual neural network. Chinese Chemical Letters, 2025, 36(1): 109884-. doi: 10.1016/j.cclet.2024.109884

    12. [12]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    13. [13]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    14. [14]

      Ting PanDinghu ZhangGuomei YouXiaoxia WuChenguang ZhangXinyu MiaoWenzhi RenYiwei HeLulu HeYuanchuan GongJie LinAiguo WuGuoliang Shao . PD-L1 targeted iron oxide SERS bioprobe for accurately detecting circulating tumor cells and delineating tumor boundary. Chinese Chemical Letters, 2025, 36(1): 109857-. doi: 10.1016/j.cclet.2024.109857

    15. [15]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    16. [16]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    17. [17]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    18. [18]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    19. [19]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    20. [20]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

Metrics
  • PDF Downloads(0)
  • Abstract views(611)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return