Citation: Ahmed Kamaal, Dubey Balkrishna, Nadeem Sayyed, Shrivastava Birendra, Sharma Pankaj. p-TSA-catalyzed one-pot synthesis and docking studies of some 5H-indeno[1,2-b]quinoline-9,11(6H,10H)-dione derivatives as anticonvulsant agents[J]. Chinese Chemical Letters, ;2016, 27(5): 721-725. doi: 10.1016/j.cclet.2016.01.053 shu

p-TSA-catalyzed one-pot synthesis and docking studies of some 5H-indeno[1,2-b]quinoline-9,11(6H,10H)-dione derivatives as anticonvulsant agents

  • Corresponding author: Ahmed Kamaal, kamaal2kamaal@gmail.com
  • Received Date: 8 April 2015
    Revised Date: 2 October 2015
    Accepted Date: 6 January 2016
    Available Online: 5 May 2016

Figures(2)

  • The present work describes a facile, one-pot three component environment friendly, green synthesis of a series of 5-(4-methoxyphenyl)-7,7-dimethyl-10-phenyl-7,8-dihydro-5H-indeno[1,2-b]quinoline-9,11(6H,10H)-dione derivatives 8(a-n). 1,3-indanedione, aryl-aldehyde and enaminone was thoroughly ground in the presence of catalytic amount of p-toluene sulfonic acid (p-TSA) to give the titled compounds in good yields. All the synthesized derivatives were evaluated for their anticonvulsant activity using the maximal electroshock (MES) method with phenytoin as a standard drug along with their neurotoxicity effect. Derivatives 8b, 8e and 8k exhibited significant anticonvulsant activity (P<0.001). The neurotoxicity study clearly revealed that all the tested compounds are non-toxic at a dose of 40 mg/kg. The molecular modeling studies also predicted good binding interactions of most active molecules with the serotonin 5-HT2A receptor. Therefore, it can be safely concluded that synthesized derivatives 8(a-n) would represent useful leads for further investigation in the development of a new class of anticonvulsant agents.
  • 加载中
    1. [1]

      Gu Y.. Multicomponent reactions in unconventional solvents:state of the art[J]. Green Chem., 2012,14:2091-2128.

    2. [2]

      Weber L.. Multi-component reactions and evolutionary chemistry[J]. Drug Dis. Today, 2002,7:143-147.

    3. [3]

      Ruijter E., Orru R.V.A.. Multicomponent reactions-opportunities for the pharmaceutical industry[J]. Drug Dis. Today:Technol., 2013,10:e15-e20.

    4. [4]

      Orru R.V.A., de Greef M.. Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds[J]. Synthesis, 2003,2003:1471-1499.

    5. [5]

      Dis. Today:Technol. Drug. The Hantzsch reaction I. Oxidative dealkylation of certain dihydropyridines[J]. J. Org. Chem., 1965,30:1914-1916.

    6. [6]

      Wang L.M., Sheng J., Zhang L.. Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction[J]. Tetrahedron, 2005,61:1539-1543.

    7. [7]

      Donelson J.L., Gibbs R.A., De S.K.. An efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzsch four component condensation[J]. J. Mol. Catal. A:Chem., 2006,256:309-311.

    8. [8]

      Maheswara M., Siddaiah V., Damu G.L.V., Rao C.V.. An efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation using a heterogeneous catalyst under solvent-free conditions[J]. ARKIVOC, 2006,2006:201-206.

    9. [9]

      Karade N.N., Budhewar V.H., Shinde S.V., Jadhav W.N.. L-Proline as an efficient organo-catalyst for the synthesis of polyhydroquinoline via multicomponent Hantzsch reaction[J]. Lett. Org. Chem., 2007,4:16-19.

    10. [10]

      Kumar A., Maurya R.A.. Bakers' yeast catalyzed synthesis of polyhydroquinoline derivatives via an unsymmetrical Hantzsch reaction[J]. Tetrahedron Lett., 2007,48:3887-3890.

    11. [11]

      Kumar A., Maurya R.A.. Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts[J]. Tetrahedron, 2007,63:1946-1952.

    12. [12]

      Cherkupally S.R., Mekala R.. p-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-component condensation[J]. Chem. Pharm. Bull., 2008,56:1002-1004.

    13. [13]

      Moghaddam F.M., Saeidian H., Mirjafary Z., Sadeghi A.. Rapid and efficient one-pot synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives through the Hantzsch four component condensation by zinc oxide[J]. J. Iran. Chem. Soc., 2009,6:317-324.

    14. [14]

      Sapkal S.B., Shelke K.F., Shingate B.B., Shingare M.S.. Nickel nanoparticle-catalyzed facile and efficient one-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions[J]. Tetrahedron Lett., 2009,50:1754-1756.

    15. [15]

      Khojastehnezhad A., Moeinpour F., Davoodnia A.. PPA-SiO2 catalyzed efficient synthesis of polyhydroquinoline derivatives through Hantzsch multicomponent condensation under solvent-free conditions[J]. Chin. Chem. Lett., 2011,22:807-810.

    16. [16]

      Ladani N.K., Mungra D.C., Patel M.P., Patel R.G.. Microwave assisted synthesis of novel Hantzsch 1,4-dihydropyridines, acridine-1,8-diones and polyhydroquinolines bearing the tetrazolo[1,5-a]quinoline moiety and their antimicrobial activity assess[J]. Chin. Chem. Lett., 2011,22:1407-1410.

    17. [17]

      Khabazzadeh H., Kermani E.T., Afzali D., Amiri A., Jalaladini A.. Efficient one-pot synthesis of polyhydroquinoline derivatives using Cs2.5H0.5PW12O40 as a heterogeneous and reusable catalyst in molten salt media,[J]. Arab. J. Chem., 2012,5:167-172.

    18. [18]

      Surasani R., Kalita D., Rao A.V.D., Yarbagi K., Chandrasekhar K.B.. FeF3 as a novel catalyst for the synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction[J]. J. Fluor. Chem., 2012,135:91-96.

    19. [19]

      Tajbakhsh M., Alaee E., Alinezhad H.. Titanium dioxide nanoparticles catalyzed synthesis of Hantzsch esters and polyhydroquinoline derivatives[J]. Chin. J. Catal., 2012,33:1517-1522.

    20. [20]

      Shaquiquzzaman M., Khan S.A., Amir M., Alam M.M.. Synthesis, anticonvulsant and neurotoxicity evaluation of some new pyrimidine-5-carbonitrile derivatives[J]. Saudi Pharm. J., 2012,20:149-154.

    21. [21]

      Anzini M., Cappelli A., Vomero S.. Synthesis of 6-(4-methyl-1-piperazinyl)-7Hindeno[2,1-c]-quinoline derivatives as potential 5-HT receptor ligands[J]. J. Heterocycl. Chem., 1991,28:1809-1812.

    22. [22]

      Yamato M., Takeuchi Y., Hashigaki K.. Synthesis and antitumor activity of fused tetracyclic quinoline derivatives[J]. J. Med. Chem., 1989,32:1295-1300.

    23. [23]

      Deady L.W., Desneves J., Kaye A.J.. Synthesis and antitumor activity of some indeno[1,2-b]quinoline-based bis carboxamides[J]. Bioorg. Med. Chem., 2000,8:977-984.

    24. [24]

      Deady L.W., Desneves J., Kaye A.J.. Positioning of the carboxamide side chain in 11-oxo-11H-indeno[1,2-b]quinoline carboxamide anticancer agents:effects on cytotoxicity[J]. Bioorg. Med. Chem., 2001,9:445-452.

    25. [25]

      Rampa A., Bisi A., Belluti F.. Acetylcholinesterase inhibitors for potential use in Alzheimer's disease:molecular modeling, synthesis and kinetic evaluation of 11H-indeno-[1,2-b]-quinolin-10-ylamine derivatives[J]. Bioorg. Med. Chem., 2000,8:497-506.

    26. [26]

      Venugopalan B., Bapat C.P., Desouza E.P.. Synthesis of 2- and 3-(4-chlorophenyl)-4-hydroxy-7-(4-trifluoromethylphenyl)-5,6,7,8-tetrahydroquinolin-5-one and 5,10-dihydro-11H-8-chloroindeno[1,2-b]quinolin-10,11-diones as antimalarials[J]. Indian J. Chem., 1992,31B:35-38.

    27. [27]

      Bekhit A.A., El-Sayed O.A., Aboulmagd E., Park J.Y.. Tetrazolo[1,5-a]quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents[J]. Eur. J. Med. Chem., 2004,39:249-255.

    28. [28]

      Deady L.W., Desneves J., Kaye A.J.. Ring-substituted 11-oxo-11Hindeno[1,2-b]quinoline-6-carboxamides with similar patterns of cytotoxicity to the dual topo Ⅰ/Ⅱ inhibitor DACA[J]. Bioorg. Med. Chem., 1999,7:2801-2809.

    29. [29]

      Ryckebusch A., Garcin D., Lansiaux A.. Synthesis, cytotoxicity, DNA interaction, and topoisomerase Ⅱ inhibition properties of novel indeno[2,1-c]quinolin-7-one and indeno[1,2-c]isoquinolin-5,11-dione derivatives[J]. J. Med Chem., 2008,51:3617-3629.

    30. [30]

      Tseng C.H., Tzeng C.C., Chung K.Y.. Synthesis and antiproliferative evaluation of 6-aryl-11-iminoindeno[1,2-c]quinoline derivatives[J]. Bioorg. Med. Chem., 2011,19:7653-7663.

    31. [31]

      Upadhayaya R.S., Shinde P.D., Sayyed A.Y.. Synthesis and structure of azolefused indeno[2,1-c]quinolines and their anti-mycobacterial properties[J]. Org. Biomol. Chem., 2010,8:5661-5673.

    32. [32]

      Kumar A., Sharma S., Tripathi V.D.. Design and synthesis of 2,4-disubstituted polyhydroquinolines as prospective antihyperglycemic and lipid modulating agents[J]. Bioorg. Med. Chem., 2010,18:4138-4148.

    33. [33]

      Porter R.J., Cereghino R.J., Gladding G.D.. Antiepileptic drug development program[J]. Clevel. Clin. Q., 1984,51:293-295.

    34. [34]

      Wang S.B., Deng X.Q., Zheng Y.. Synthesis and evaluation of anticonvulsant and antidepressant activities of 5-alkoxytetrazolo[1,5-c]thieno[2,3-e]pyrimidine derivatives[J]. Eur. J. Med. Chem., 2012,56:139-144.

    35. [35]

      Pöch G., Pancheva S.N.. Calculating slope and ED50 of additive dose-response curves, and application of these tabulated parameter values[J]. J. Pharmacol. Toxicol. Methods, 1995,33:137-145.

    36. [36]

      Saravanan G., Alagarsamy V., Dineshkumar P.. Anticonvulsant activity of novel 1-(morpholinomethyl)-3-substituted isatin derivatives[J]. Bull. Fac. Pharm. Cairo Univ., 2014,52:115-124.

    37. [37]

      M.K. Ibrahim, K. El-Adl, A.A.Al-Karmalawy, Design, synthesis, molecular docking and anticonvulsant evaluation of novel 6-iodo-2-phenyl-3-substituted-quinazolin-4(3H)-ones, Bulletin of Faculty of Pharmacy, Cairo University. (2015).

  • 加载中
    1. [1]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    2. [2]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    3. [3]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    4. [4]

      Hailang DengAbebe Reda WolduAbdul QayumZanling HuangWeiwei ZhuXiang PengPaul K. ChuLiangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892

    5. [5]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    6. [6]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    7. [7]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    8. [8]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    9. [9]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

    10. [10]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    11. [11]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    12. [12]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    13. [13]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    14. [14]

      Jiao ChenZihan ZhangGuojin SunYudi ChengAihua WuZefan WangWenwen JiangFulin ChenXiuying XieJianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050

    15. [15]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    16. [16]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    17. [17]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    18. [18]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    19. [19]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    20. [20]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

Metrics
  • PDF Downloads(4)
  • Abstract views(625)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return