Citation: Zheng Jing-Wei, Ma Lin. Metal complexes of anthranilic acid derivatives: A new class of noncompetitive α-glucosidase inhibitors[J]. Chinese Chemical Letters, ;2016, 27(5): 627-630. doi: 10.1016/j.cclet.2016.01.052 shu

Metal complexes of anthranilic acid derivatives: A new class of noncompetitive α-glucosidase inhibitors

  • Corresponding author: Zheng Jing-Wei, zhengjnw@mail2.sysu.edu.cn
  • Received Date: 21 July 2015
    Revised Date: 14 December 2015
    Accepted Date: 23 January 2016
    Available Online: 10 May 2016

Figures(2)

  • Metal complexes of anthranilic acid derivatives that constitute a novel class of non-sugar-type α-glucosidase inhibitors were synthesized and assessed in vitro for inhibitory activity. All of the Ag(Ⅰ) complexes (9-16) inhibited α-glucosidase at the nanomolar scale, while 3,5-dichloroanthranilic acid silver(Ⅰ) (9) was the most potent (IC50=3.21 nmol/L). Analysis of the kinetics of enzyme inhibition indicated that the mechanism of the newly prepared silver complexes was noncompetitive. The structure-activity relationships were also analyzed, and they are discussed in this report.
  • 加载中
    1. [1]

      Heightman T.D., Vasella A.T.. Recent insights into inhibition, structure, and mechanism of configuration-retaining glycosidases[J]. Angew. Chem. Int. Ed., 1999,38:750-770.

    2. [2]

      Krasikov V.V., Karelov D.V., Firsov L.M.. α-glucosidase[J]. Biochemistry (Moscow), 2001,66:267-281.

    3. [3]

      Lillelund V.H., Jensen H.H., Liang X., Bols M.. Recent developments of transitionstate analogue glycosidase inhibitors of non-natural product origin[J]. Chem. Rev., 2002,102:515-553.

    4. [4]

      Melo E.B., Gomes A.S., Carvalho I.. α- and β-glucosidase inhibitors:chemical structure and biological activity[J]. Tetrahedron, 2006,62:10277-10302.

    5. [5]

      Bertozzi C.R., Kiessling L.L.. Chemical glycobiology[J]. Science, 2001,291:2357-2364.

    6. [6]

      Horii S., Fukase H., Matsuo T.. Synthesis and α-D-glucosidase inhibitory activity of N-substituted valiolamine derivatives as potential oral antidiabetic agents[J]. J. Med. Chem., 1986,29:1038-1046.

    7. [7]

      Floris A.L., Peter L.L., Reinier P.. α-glucosidase inhibitors for patients with type 2 diabetes:results from a Cochrane systematic review and meta-analysis[J]. Diabetes Care, 2005,28:154-163.

    8. [8]

      Fernandes B., Sagman U., Auger N., Demetrio M., Dennis J.W.. β1-6 Branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia[J]. Cancer Res., 1991,51:718-723.

    9. [9]

      You Z.L., Shi D.H., Xu C., Zhang Q., Zhu H.L.. Schiff base transition metal complexes as novel inhibitors of xanthine oxidase[J]. Eur. J. Med. Chem., 2008,43:862-871.

    10. [10]

      Wang Y.F., Ma L., Li Z.. Synergetic inhibition of metal ions and genistein of α-glucosidase[J]. FEBS Lett., 2004,576:46-50.

    11. [11]

      Tsujii E., Muroi M., Shiragami N., Takatsuki A.. Nectrisine is a potent inhibitor of α-glucosidase, demonstrating activities similarly at enzyme and cellular levels[J]. Biochem. Biophys. Res. Commun., 1996,220:459-466.

    12. [12]

      Puthraya K.H., Srivastava A.J., Adwankar M.K., Chitnis M.P.. Some mixed-ligand palladium(Ⅱ) complexes of 2, 20-bipyridine and amino acids as potential anticancer agents[J]. J. Inorg. Biochem., 1985,25:207-215.

    13. [13]

      Varga G., Timar Z., Csendes Z.. Building, characterising and catalytic activity testing of Co-C-protected amino acid complexes covalently grafted onto chloropropylated silica gel[J]. J. Mol. Struct., 2014,1090:138-143.

    14. [14]

      Laila H.A., Rafat M.E.K., Lobna A.E.N.. Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(Ⅱ) Schiff base amino acid complexes[J]. Spectrochim. Acta A, 2013,111:266-276.

    15. [15]

      Shou Q.Y., Banbury L.K., Maccarone A.T.. Antibacterial anthranilic acid derivatives from Geijera parviflora[J]. Fitoterapia, 2014,93:62-66.

    16. [16]

      Goel B., Ram R., Bansal R.T.. 2-substituted-3-(4-bromo-2-carboxyphenyl)-5-methyl-4-thiazolidinones as potential anti-inflammatory agents[J]. Eur. J. Med. Chem., 1999,34:265-269.

    17. [17]

      Sarrafi Y., Mohadeszadeh M., Alimohammadi K.. Microwave-assisted chemoselective copper-catalyzed amination of o-bromobenzoic acids using aromatic amines under solvent free conditions[J]. Chin. Chem. Lett., 2009,20:784-788.

    18. [18]

      Borozan S.Z., Stojanovic S.D.. Halogen bonding in complexes of proteins and nonnatural amino acids[J]. Comput. Biol. Chem., 2013,47:231-239.

    19. [19]

      Usami Y., Takaoka I., Ichikawa H.. First total synthesis of antitumor natural product (+)- and (-)-pericosine A:determination of absolute stereo structure[J]. J. Org. Chem., 2007,72:6127-6134.

    20. [20]

      Murphy C.D.. Recent developments in enzymatic chlorination[J]. Nat. Prod. Rep., 2006,23:147-152.

    21. [21]

      Parisini E., Metrangolo P., Pilati T., Resnati G., Terraneo G.. Halogen bonding in halocarbon-protein complexes:a structural survey[J]. Chem. Soc. Rev., 2011,40:2267-2278.

    22. [22]

      Auffinger P., Hays F.A., Westhof E., Ho P.S.. Halogen bonds in biological molecules[J]. Proc. Natl. Acad. Sci. USA, 2004,101:16789-16794.

    23. [23]

      Lu S.Y., Jiang Y.J., Zhou P., Zou J.W., Wu T.X.. Geometric characteristics and energy landscapes of halogen-water-hydrogen bridges at protein-ligand interfaces[J]. Chem. Phys. Lett., 2010,485:348-353.

    24. [24]

      Pistia-Brueggeman G., Hollingsworth R.I.. A preparation and screening strategy for glycosidase inhibitor[J]. Tetrahedron, 2001,57:8773-8778.

    25. [25]

      Kim J.S., Kwon Y.S., Sa Y.J., Kim M.J.. Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect[J]. J. Agric. Food Chem., 2011,59:138-144.

    26. [26]

      Moamen S.R., Ibrahim M.E.D., Hassan K.I., Samir E.G.. Synthesis and spectroscopic studies of some transition metal complexes of a novel Schiff base ligands derived frome 5-phenylazo-salicyladehyde and o-amino benzoic acid[J]. Spectrochim. Acta A, 2006,65:1208-1220.

    27. [27]

      Kasuga N.C., Sato M., Amano A.. Light-stable and antimicrobial active silver(Ⅰ) complexes composed of triphenylphosphine and amino acid ligands:synthesis, crystal structure, and antimicrobial activity of silver(Ⅰ) complexes constructed with hard and soft donor atoms (n{[Ag(L)(PPh3)]2} with L=α-ala-or asn- and n=1 or 2)[J]. Inorg. Chim. Acta, 2008,361:1267-1273.

    28. [28]

      Chohan Z.H., Supuran C.T.. In-vitro antibacterial and cytotoxic activity of cobalt (ii), copper (ii), nickel (ii) and zinc (ii) complexes of the antibiotic drug cephalothin[J]. J. Enzym. Inhib. Med. Chem., 2005,20:463-468.

  • 加载中
    1. [1]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    2. [2]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    3. [3]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    4. [4]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    5. [5]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    6. [6]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    7. [7]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    8. [8]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    9. [9]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    10. [10]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    11. [11]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    12. [12]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    13. [13]

      Mianling YangMeehyein KimPeng Zhan . Modular miniaturized synthesis and in situ biological evaluation facilitate rapid discovery of potent MraY inhibitors as antibacterial agents. Chinese Chemical Letters, 2025, 36(2): 110455-. doi: 10.1016/j.cclet.2024.110455

    14. [14]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    15. [15]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    16. [16]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    17. [17]

      Jingjing ZhangLan DingVadim PopkovKezhen Qi . Aqueous indium metal batteries. Chinese Chemical Letters, 2025, 36(2): 110407-. doi: 10.1016/j.cclet.2024.110407

    18. [18]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    19. [19]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    20. [20]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

Metrics
  • PDF Downloads(1)
  • Abstract views(662)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return