Citation: Liu Ming-Xian, Deng Xiang-Xiang, Zhu Da-Zhang, Duan Hui, Xiong Wei, Xu Zi-Jie, Gan Li-Hua. Magnetically separated and N,S co-doped mesoporous carbon microspheres for the removal of mercury ions[J]. Chinese Chemical Letters, ;2016, 27(5): 795-800. doi: 10.1016/j.cclet.2016.01.038 shu

Magnetically separated and N,S co-doped mesoporous carbon microspheres for the removal of mercury ions

  • Corresponding author: Gan Li-Hua, ganlh@tongji.edu.cn
  • Received Date: 9 October 2015
    Revised Date: 22 December 2015
    Accepted Date: 21 January 2016
    Available Online: 2 May 2016

Figures(5)

  • Magnetically separated and N, S co-doped mesoporous carbon microspheres (N/S-MCMs/Fe3O4) are fabricated by encapsulating SiO2 nanoparticles within N, S-containing polymer microspheres which were prepared using resorcinol/formaldehyde as the carbon source and cysteine as the nitrogen and sulfur co-precursors, followed by the carbonization process, silica template removal, and the introduction of Fe3O4 into the carbon mesopores. N/S-MCMs/Fe3O4 exhibits an enhanced Hg2+ adsorption capacity of 74.5 mg/g, and the adsorbent can be conveniently and rapidly separated from wastewater using an externalmagnetic field. This study opens up new opportunities to synthesize welldeveloped, carbon-based materials as an adsorbent for potential applications in the removal of mercury ions from wastewater.
  • 加载中
    1. [1]

      (a) J.H. Zhu, S.Y. Wei, H.B. Gu, et al., One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal, Environ. Sci. Technol. 46(2011) 977-985;
      (b) H.B. Gu, S.B. Rapole, J. Sharma, et al., Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal, RSC Adv. 2(2012) 11007-11018;
      (c) P.K. Tripathi, M.X. Liu, Y.H. Zhao, et al., Enlargement of uniform micropores in hierarchically ordered micro-mesoporous carbon for high level decontamination of bisphenol A, J. Mater. Chem. A 2(2014) 8534-8544;
      (d) M. Cegłowski, G. Schroeder, Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions, Chem. Eng. J. 263(2015) 402-411;
      (e) S.Y. Lin, H.J. Zhu, W.J. Xu, G.M. Wang, N.Y. Fu, A squaraine based fluorescent probe for mercury ion via coordination induced deaggregation signaling, Chin. Chem. Lett. 25(2014) 1291-1295.

    2. [2]

      (a) J.H. Zhu, H.B. Gu, J. Guo, et al., Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr (VI) removal, J. Mater. Chem. A 2(2014) 2256-2265;
      (b) S.X. Zhang, Y.Y. Zhang, J.S. Liu, et al., Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal, Chem. Eng. J. 226(2013) 30-38;
      (c) F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:a review, J. Environ. Manag. 92(2011) 407-418;
      (d) A.H. Chen, S.C. Liu, C.Y. Chen, C.Y. Chen, Comparative adsorption of Cu (Ⅱ), Zn (Ⅱ), and Pb (Ⅱ) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin, J. Hazard. Mater. 154(2008) 184-191;
      (e) Y. Liu, E.B. Yang, R.H. Han, et al., A new rhodamine-based fluorescent chemosensor for mercury in aqueous media, Chin. Chem. Lett. 25(2014) 1065-1068.

    3. [3]

      (a) M. Hadavifar, N. Bahramifar, H. Younesi, Q. Li, Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multiwalled carbon nanotube with both amino and thiolated groups, Chem. Eng. J. 237(2014) 217-228;
      (b) A.M. Starvin, T.P. Rao, Removal and recovery of mercury (Ⅱ) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant, J. Hazard. Mater. 113(2004) 75-79;
      (c) J.Z. Zhu, B.L. Deng, J. Yang, D.C. Gang, Modifying activated carbon with hybrid ligands for enhancing aqueous mercury removal, Carbon 47(2009) 2014-2025.

    4. [4]

      Ismaiel A.A., Aroua M.K., Yusoff R.. Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water[J]. Chem. Eng. J., 2013,225:306-314.

    5. [5]

      (a) M.M. Matlock, B.S. Howerton, D.A. Atwood, Chemical precipitation of heavy metals from acid mine drainage, Water Res. 36(2002) 4757-4764;
      (b) J. Aguado, J.M. Arsuaga, A. Arencibia, Adsorption of aqueous mercury (Ⅱ) on propylthiol-functionalized mesoporous silica obtained by cocondensation, Ind. Eng. Chem. Res. 44(2005) 3665-3671;
      (c) C. Jeon, W.H. Höll, Chemical modification of chitosan and equilibrium study for mercury ion removal, Water Res. 37(2003) 4770-4780;
      (d) S. Chaturabul, W. Srirachat, T. Wannachod, et al., Separation of mercury (Ⅱ) from petroleum produced water via hollow fiber supported liquid membrane and mass transfer modeling, Chem. Eng. J. 265(2015) 34-46;
      (e) H. Pietilä, P. Perämä ki, J. Piispanen, et al., Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods, Chemosphere 124(2015) 47-53;
      (f) S. Vasudevan, M.A. Oturan, Electrochemistry:as cause and cure in water pollution-an overview, Environ. Chem. Lett. 12(2014) 97-108.

    6. [6]

      (a) S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water:a review, J. Hazard. Mater. 97(2003) 219-243;
      (b) Y. Kikuchi, Q. Qian, M. Machida, et al., Effect of ZnO loading to activated carbon on Pb (Ⅱ) adsorption from aqueous solution, Carbon 44(2006) 195-202;
      (c) Y.Y. Xu, Z.H. Hao, H. Chen, J.M. Sun, D.J. Wang, Preparation of polyacrylonitrile initiated by modified corn starch and adsorption for mercury after modification, Ind. Eng. Chem. Res. 53(2014) 4871-4877.

    7. [7]

      (a) Y. Shin, G.E. Fryxell, W. Um, et al., Sulfur-functionalized mesoporous carbon, Adv. Funct. Mater. 17(2007) 2897-2901;
      (b) G. Zolfaghari, A. Esmaili-Sari, M. Anbia, et al., Taguchi optimization approach for Pb (Ⅱ) and Hg (Ⅱ) removal from aqueous solutions using modified mesoporous carbon, J. Hazard. Mater. 192(2011) 1046-1055.

    8. [8]

      Lai L.F., Huang G.M., Wang X.F., Weng J.. Solvothermal syntheses of hollow carbon microspheres modified with-NH2 and-OH groups in one-step process[J]. Carbon, 2010,48:3145-3156.

    9. [9]

      (a) X.B. Wang, J. Liu, W.Z. Xu, One-step hydrothermal preparation of aminofunctionalized carbon spheres at low temperature and their enhanced adsorption performance towards Cr (VI) for water purification, Colloids Surf. A 415(2012) 288-294;
      (b) X.H. Song, P. Gunawan, R.R. Jiang, et al., Surface activated carbon nanospheres for fast adsorption of silver ions from aqueous solutions, J. Hazard. Mater. 194(2011) 162-168;
      (c) X. Zhao, W. Li, S.S. Zhang, L.H. Liu, S.X. Liu, Hierarchically tunable porous carbon spheres derived from larch sawdust and application for efficiently removing Cr (Ⅲ) and Pb (Ⅱ), Mater. Chem. Phys. 155(2015) 52-58;
      (d) C.M. Zhang, W. Song, G.H. Sun, et al., Synthesis, characterization, and evaluation of activated carbon spheres for removal of dibenzothiophene from model diesel fuel, Ind. Eng. Chem. Res. 53(2014) 4271-4276.

    10. [10]

      (a) L.C.A. Oliveira, D.I. Petkowicz, A. Smaniotto, S.B.C. Pergher, Magnetic zeolites:a new adsorbent for removal of metallic contaminants from water, Water Res. 38(2004) 3699-3704;
      (b) Z.G. Jia, L.L. Yang, J.H. Liu, Q.Z. Wang, R.S. Zhu, Preparation of magnetic carbon spheres derived form 8-quinoliolato Fe (Ⅲ) complexe and its application in water treatment, J. Ind. Eng. Chem. 21(2015) 111-117;
      (c) X.J. Peng, Z.K. Luan, Z.C. Di, Z.G. Zhang, C.L. Zhu, Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb (Ⅱ) and Cu (Ⅱ) from water, Carbon 43(2005) 880-883;
      (d) J.F. Liu, Z.S. Zhao, G.B. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water, Environ. Sci. Technol. 42(2008) 6949-6954.

    11. [11]

      Liu M.X., Gan L.H., Xiong W.. Development of MnO2/porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes[J]. J. Mater. Chem. A, 2014,2:2555-2562.

    12. [12]

      Sadezky A., Muckenhuber H., Grothe H., Niessner R., Pöschl U.. Raman microspectroscopy of soot and related carbonaceous materials:spectral analysis and structural information[J]. Carbon, 2005,43:1731-1742.

    13. [13]

      (a) D.L.A. de Faria, S.V. Silva, M.T. de Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides, J. Raman Spectrosc. 28(1997) 873-878;
      (b) C.F. Guo, Y. Hu, H.S. Qian, J.Q. Ning, S.J. Xu, Magnetite (Fe3O4) tetrakaidecahedral microcrystals:synthesis, characterization, and micro-Raman study, Mater. Charact. 62(2011) 148-151.

    14. [14]

      Lee S.Y., Kim D.H., Choi S.C.. Porous multi-walled carbon nanotubes by using catalytic oxidation via transition metal oxide[J]. Microporous Mesoporous Mater., 2014,194:46-51.

    15. [15]

      (a) Y.H. Zhao, M.X. Liu, X.X. Deng, et al., Nitrogen-functionalized microporous carbon nanoparticles for high performance supercapacitor electrode, Electrochim. Acta 153(2015) 448-455;
      (b) D.Z. Zhu, Y.W. Wang, L.H. Gan, et al., Nitrogen-containing carbon microspheres for supercapacitor electrodes, Electrochim. Acta 158(2015) 166-174.

    16. [16]

      (a) S.A. Wohlgemuth, F. Vilela, M.M. Titirici, M. Antonietti, A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres, Green Chem. 14(2012) 741-749;
      (b) S.A. Wohlgemuth, R.J. White, M.G. Willinger, M.M. Titirici, M. Antonietti, A one-pot hydrothermal synthesis of sulfur and nitrogen doped carbon aerogels with enhanced electrocatalytic activity in the oxygen reduction reaction, Green Chem. 14(2012) 1515-1523.

    17. [17]

      Gao J.N., Ran X.Z., Shi C.M.. One-step solvothermal synthesis of highly watersoluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters[J]. Nanoscale, 2013,5:7026-7033.

    18. [18]

      Ma X.M., Gan L.H., Liu M.X.. Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes[J]. J. Mater. Chem. A, 2014,2:8407-8415.

    19. [19]

      Stöber W., Fink A., Bohn E.. Controlled growth of monodisperse silica spheres in the micron size range[J]. J. Colloid Interface Sci., 1968,26:62-69.

    20. [20]

      Liu J., Qiao S.Z., Liu H.. Extension of the Stöber method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres[J]. Angew. Chem. Int. Ed., 2011,50:5947-5951.

    21. [21]

      (a) J. Choma, D. Jamioła, K. Augustynek, et al., New opportunities in Stöber synthesis:preparation of microporous and mesoporous carbon spheres, J. Mater. Chem. 22(2012) 12636-12642;
      (b) A.B. Fuertes, P. Valle-Vigón, M. Sevilla, One-step synthesis of silica@resorcinol-formaldehyde spheres and their application for the fabrication of polymer and carbon capsules, Chem. Commun. 48(2012) 6124-6126;
      (c) J. Liu, T.Y. Yang, D.W. Wang, et al., A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres, Nat. Commun. 4(2013) 2798;
      (d) M.X. Liu, X.M. Ma, L.H. Gan, et al., A facile synthesis of a novel mesoporous Ge@C sphere anode with stable and high capacity for lithium ion batteries, J. Mater. Chem. A 2(2014) 17107-17114;
      (e) M.X. Liu, J.H. Qian, Y.H. Zhao, et al., Core-shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes, J. Mater. Chem. A 3(2015) 11517-11526.

    22. [22]

      Wickramaratne N.P., Perera V.S., Ralph J.M., Huang S.D., Jaroniec M.. Cysteineassisted tailoring of adsorption properties and particle size of polymer and carbon spheres[J]. Langmuir, 2013,29:4032-4038.

  • 加载中
    1. [1]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    2. [2]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    3. [3]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    4. [4]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    5. [5]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    6. [6]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    7. [7]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    8. [8]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    9. [9]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    10. [10]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    11. [11]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    12. [12]

      Dan LuoJinya TianJianqiao ZhouXiaodong Chi . Anthracene-bridged "Texas-sized" box for the simultaneous detection and uptake of tryptophan. Chinese Chemical Letters, 2024, 35(9): 109444-. doi: 10.1016/j.cclet.2023.109444

    13. [13]

      Hong-Rui LiXia KangRui GaoMiao-Miao ShiBo BiZe-Yu ChenJun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958

    14. [14]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    15. [15]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    16. [16]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    17. [17]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    18. [18]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    19. [19]

      Xueyan ZhangJicong ChenSongren HanShiyan DongHuan ZhangYuhong ManJie YangYe BiLesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668

    20. [20]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

Metrics
  • PDF Downloads(1)
  • Abstract views(583)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return