Citation: Lu Ya, Zhang Cong-Yun, Zhang Dong-Jie, Hao Rui, Hao Yao-Wu, Liu Ya-Qing. Fabrication of flower-like silver nanoparticles for surface-enhanced Raman scattering[J]. Chinese Chemical Letters, ;2016, 27(5): 689-692. doi: 10.1016/j.cclet.2016.01.032 shu

Fabrication of flower-like silver nanoparticles for surface-enhanced Raman scattering

  • Corresponding author: Hao Yao-Wu, yhao@uta.edu Liu Ya-Qing, zfflyq98@163.com
  • Received Date: 12 October 2015
    Revised Date: 4 November 2015
    Accepted Date: 19 January 2015
    Available Online: 1 May 2016

Figures(4)

  • The flower-like silver nanoparticles have been synthesized by reducing silver nitrate (AgNO3) with ascorbic acid (AA) as the reductant and polyvinyl pyrrolidone (PVP) as the capping agent under vigorous stirring. Such flower-like nanoparticles are aggregates of small nanoplates and nanorods. They were tested as substrates for the surface-enhanced Raman scattering (SERS), showing high sensitivity for detecting Rhodamine 6G (R6G) at a concentration as low as 10-7 mol/L. It has been found that replacing mechanical stirring with ultrasound sonication would drastically change the particle morphology, from flower-like nanoparticles to well-dispersed smaller nanoparticles. Furthermore, when trace amounts of NaCl were added into the reagents, well-dispersed Ag nanoparticles formed even in vigorous stirring. These phenomena can be explained with the diffusion and reactant supply during nucleation and growth of Ag nanoparticles.
  • 加载中
    1. [1]

      Liu X., Liu Z.Q., Hao S.X., Chu W.. Facile fabrication of well-dispersed silver nanoparticles loading on TiO2 nanotube arrays by electrodeposition[J]. Mater. Lett., 2012,88:66-68.

    2. [2]

      Rivero P.J., Urrutia A., Goicoechea J.. An antibacterial submicron fiber mat with in situ synthesized silver nanoparticles[J]. J. Appl. Polym. Sci., 2012,126:1228-1235.

    3. [3]

      Ouyang S.X., Ye J.H.. β-AgAl1-xGaxO2 Solid-solution photocatalysts:continuous modulation of electronic structure toward high-performance visible-light photoactivity[J]. J. Am. Chem. Soc., 2011,133:7757-7763.

    4. [4]

      Li J., Zhang D., Guo J.B., Wei J.. Electrochemical behavior and specific capacitance of polyaniline/silver nanoparticle/multi-walled carbon nanotube composites[J]. Chin. J. Chem. Phys., 2014,27:718-724.

    5. [5]

      Chen L.M., Liu Y.N.. Ag-nanoparticle-modified single Ag nanowire for detection of melamine by surface-enhanced Raman spectroscopy[J]. J. Raman Spectrosc., 2012,43:986-991.

    6. [6]

      Liu Y., Huang L.Q., Wang J.. Fabrication of silver ordered nanoarrays SERSactive substrates and their applications in bladder cancer cells detection[J]. Spectrosc. Spect. Anal., 2012,32:386-390.

    7. [7]

      Xia Y.N., Xiong Y.J., Lim B.. Shape-controlled synthesis of metal nanocrystals:simple chemistry meets complex physics?[J]. Angew. Chem. Int. Ed. Engl, 2008,48:60-103.

    8. [8]

      Wiley B., Sun Y.G., Xia Y.N.. Synthesis of silver nanostructures with controlled shapes and properties[J]. Acc. Chem. Res., 2007,40:1067-1076.

    9. [9]

      Cobley C.M., Skrabalak S.E., Campbell D.J., Xia Y.N.. Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications[J]. Plasmonics, 2009,4:171-179.

    10. [10]

      Gómez-Acosta A., Manzano-Ramírez A., López-Naranjo E.J.. Silver nanostructure dependence on the stirring-time in a high-yield polyol synthesis using a short-chain PVP[J]. Mater. Lett., 2015,138:167-170.

    11. [11]

      Shaban S.M., Aiad I., El-Sukkary M.M., Soliman E.A., El-Awady M.Y.. Preparation of capped silver nanoparticles using sunlight and cationic surfactants and their biological activity[J]. Chin. Chem. Lett., 2015,26:1415-1420.

    12. [12]

      Yousefzadi M., Rahimi Z., Ghafori V.. The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen)[J]. J. Agardh, Mater. Lett, 2014,137:1-4.

    13. [13]

      Liu T., Li D.S., Yang D.R., Jiang M.H.. Fabrication of flower-like silver structures through anisotropic growth[J]. Langmuir, 2011,27:6211-6217.

    14. [14]

      Hong L.J., Li Q., Lin H., Li Y.. Synthesis of flower-like silver nanoarchitectures at room temperature[J]. Mater. Res. Bull., 2009,44:1201-1204.

    15. [15]

      Coskun S., Aksoy B., Unalan H.E.. Polyol synthesis of silver nanowires:an extensive parametric study[J]. Cryst. Growth Des., 2011,11:4963-4969.

    16. [16]

      Moghimi-Rad J., Isfahani T.D., Hadi I.. Shape-controlled synthesis of silver particles by surfactant self-assembly under ultrasound radiation[J]. Appl. Nanosci., 2011,1:27-35.

    17. [17]

      Suslick K.S., Hammerton D.A., Cline R.E.. Sonochemical hot spot[J]. J. Am. Chem. Soc, 1986,108:5641-5642.

    18. [18]

      Chen D.P., Qiao X.L., Qiu X.L., Chen J.G., Jiang R.Z.. Large-scale synthesis of silver nanowires via a solvothermal method[J]. J. Mater. Sci., 2011,22:6-13.

    19. [19]

      Xi J.J., Ni Y.H., Liu A.M.. Versatile Ag dendrites:simple galvanostatic deposition and applications[J]. New J. Chem., 2014,38:1738-1742.

  • 加载中
    1. [1]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    2. [2]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    3. [3]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    4. [4]

      Wenya Jiang Jianyu Wei Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371

    5. [5]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    6. [6]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    7. [7]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    8. [8]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    9. [9]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    10. [10]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    11. [11]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    12. [12]

      Ningxiang Wu Huaping Zhao Yong Lei . Nanomaterials with highly ordered nanostructures: Definition, influence and future challenge. Chinese Journal of Structural Chemistry, 2024, 43(11): 100392-100392. doi: 10.1016/j.cjsc.2024.100392

    13. [13]

      Juanjuan WangFang WangBin QinYue WuHuan YangXiaolong LiLanfang WangXiufang QinXiaohong Xu . Controlled synthesis and excellent magnetism of ferrimagnetic NiFe2Se4 nanostructures. Chinese Chemical Letters, 2024, 35(11): 109449-. doi: 10.1016/j.cclet.2023.109449

    14. [14]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    15. [15]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    16. [16]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    17. [17]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    18. [18]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    19. [19]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    20. [20]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

Metrics
  • PDF Downloads(2)
  • Abstract views(925)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return