Citation: Hao Lin, Liu Xing-Li, Wang Jun-Tao, Wang Chun, Wu Qiu-Hua, Wang Zhi. Metal-organic framework derived magnetic nanoporous carbon as an adsorbent for the magnetic solid-phase extraction of chlorophenols from mushroom sample[J]. Chinese Chemical Letters, ;2016, 27(5): 783-788. doi: 10.1016/j.cclet.2016.01.021 shu

Metal-organic framework derived magnetic nanoporous carbon as an adsorbent for the magnetic solid-phase extraction of chlorophenols from mushroom sample

  • Corresponding author: Wang Zhi, zhiwang2013@aliyun.com
  • Received Date: 25 July 2015
    Revised Date: 27 August 2015
    Accepted Date: 5 January 2016
    Available Online: 22 May 2016

Figures(8)

  • In this work, a metal-organic framework derived nanoporous carbon (MOF-5-C) was fabricated and modified with Fe3O4 magnetic nanoparticles. The resulting magnetic MOF-5-derived porous carbon (Fe3O4@MOF-5-C) was then used for the magnetic solid-phase extraction of chlorophenols (CPs) from mushroom samples prior to high performance liquid chromatography-ultraviolet detection. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and N2 adsorption were used to characterize the adsorbent. After experimental optimization, the amount of the adsorbent was chosen as 8.0 mg, extraction time as 10 min, sample volume as 50 mL, desorption solvent as 0.4 mL (0.2 mL×2) of alkaline methanol, and sample pH as 6. Under the above optimized conditions, good linearity for the analytes was obtained in the range of 0.8-100.0 ng g-1 with the correlation coefficients between 0.9923 and 0.9963. The limits of detection (S/N=3) were in the range of 0.25-0.30 ng g-1, and the relative standard deviations were below 6.8%. The result showed that the Fe3O4@MOF-5-C has an excellent adsorption capacity for the analytes.
  • 加载中
    1. [1]

      Hu Y.L., Huang Z.L., Liao J., Li G.K.. Chemical bonding approach for fabrication of hybrid magnetic metal-organic framework-5:high efficient adsorbents for magnetic enrichment of trace analytes[J]. Anal. Chem., 2013,85:6885-6893.

    2. [2]

      Li Q.W., Zhang W.Y., Miljanić O.Š.. Docking in metal-organic frameworks[J]. Science, 2009,325:855-859.

    3. [3]

      Zhou H.C., Long J.R., Yaghi O.M.. Introduction to metal-organic frameworks[J]. Chem. Rev., 2012,112:673-674.

    4. [4]

      Kaye S.S., Dailly A.D., Yaghi O.M., Long J.R.. Impact of preparation and handling on the hydrogen storage properties of Zn4O (1,4-benzenedicarboxylate)3(MOF-5)[J]. J. Am. Chem. Soc., 2007,129:14176-14177.

    5. [5]

      Kreno L.E., Leong K., Farha O.K.. Metal-organic framework materials as chemical sensors[J]. Chem. Rev., 2012,112:1105-1125.

    6. [6]

      Li J.R., Sculley J., Zhou H.C.. Metal-organic frameworks for separations[J]. Chem. Rev., 2012,112:869-932.

    7. [7]

      Liu B., Shioyama H., Jiang H.L., Zhang X.B., Xu Q.. Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor[J]. Carbon, 2010,48:456-463.

    8. [8]

      Jiang H.L., Liu B., Lan Y.Q.. From metal-organic framework to nanoporous carbon:toward a very high surface area and hydrogen uptake[J]. J. Am. Chem. Soc., 2011,133:11854-11857.

    9. [9]

      Hao L., Wang C., Wu Q.H.. Metal-organic framework derived magnetic nanoporous carbon:novel adsorbent for magnetic solid-phase extraction[J]. Anal. Chem., 2014,86:12199-12205.

    10. [10]

      Chen L., Bai J., Wang C.. One-step solid-state thermolysis of a metal-organic framework:a simple and facile route to large-scale of multiwalled carbon nanotubes[J]. Chem. Commun., 2008,44:1581-1583.

    11. [11]

      Hu M., Reboul J., Furukawa S.. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon[J]. J. Am. Chem. Soc., 2012,134:2864-2867.

    12. [12]

      Chaikittisilp W., Ariga K., Yamauchi Y.. A new family of carbon materials:synthesis of MOF-derived nanoporous carbons and their promising applications[J]. J. Mater. Chem. A, 2013,1:14-19.

    13. [13]

      Sun J.K., Xu Q.. Functional materials derived from open framework templates/precursors:synthesis and applications[J]. Energy Environ. Sci., 2014,7:2071-2100.

    14. [14]

      Yang S.J., Kim T., Im J.H.. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chem. Mater., 2012,24:464-470.

    15. [15]

      Banerjee A., Gokhale R., Bhatnagar S.. MOF derived porous carbon-Fe3O4 nanocomposite as a high performance, recyclable environmental superadsorbent[J]. J. Mater. Chem., 2012,22:19694-19699.

    16. [16]

      Li R., Yuan Y.P., Qiu L.G., Zhang W., Zhu J.F.. A rational self-sacrificing template route to metal-organic framework nanotubes and reversible vapor-phase detection of nitroaromatic explosives[J]. Small, 2012,8:225-230.

    17. [17]

      Li R., Ren X.Q., Feng X.. A highly stable metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation[J]. Chem. Commun., 2014,50:6894-6897.

    18. [18]

      Kim J., McNamara N.D., Her T.H., Hicks J.C.. Carbothermal reduction of Ti-modified IRMOF-3:an adaptable synthetic method to support catalytic nanoparticles on carbon[J]. ACS Appl. Mater. Interfaces, 2013,5:11479-11487.

    19. [19]

      Liu J., Wang H., Wu C.. Preparation and characterization of nanoporous carbon-supported platinum as anode electrocatalyst for direct borohydride fuel cell[J]. Int. J. Hydrogen Energy, 2014,39:6729-6736.

    20. [20]

      Torad N.L., Hu M., Ishihara S.. Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment[J]. Small, 2014,10:2096-2107.

    21. [21]

      Li X.S., Zhu G.T., Luo Y.B., Yuan B.F., Feng Y.Q.. Synthesis and applications of functionalized magnetic materials in sample preparation[J]. TrAC Trends Anal. Chem., 2013,45:233-247.

    22. [22]

      Ríos A., Zougagh M., Bouri M.. Magnetic (nano)materials as an useful tool for sample preparation in analytical methods. A review[J]. Anal. Methods, 2013,5:4558-4573.

    23. [23]

      Wang C., Ma R.Y., Wu Q.H., Sun M., Wang Z.. Magnetic porous carbon as an adsorbent for the enrichment of chlorophenols from water and peach juice samples[J]. J. Chromatogr. A, 2014,1361:60-66.

    24. [24]

      Ghaffari A., Tehrani M.S., Husain S.W., Anbia M., Azar P.A.. Adsorption of chlorophenols from aqueous solution over amino-modified ordered nanoporous silica materials[J]. J. Nanostruct. Chem., 2014,4:114-123.

    25. [25]

      Sun M., Cui P.L., Ji S.J.. Octadecyl-modified graphene as an adsorbent for hollow fiber liquid phase microextraction of chlorophenols from honey[J]. Bull. Korean Chem. Soc., 2014,35:1011-1015.

    26. [26]

      Petit C., Bandosz T.J.. MOF-graphite oxide composites:combining the uniqueness of graphene layers and metal-organic frameworks[J]. Adv.Mater., 2009,21:4753-4757.

    27. [27]

      Wang L., Zang X.H., Wang C., Wang Z.. Graphene oxide as a micro-solid-phase extraction sorbent for the enrichment of parabens from water and vinegar samples[J]. J. Sep. Sci., 2014,37:1656-1662.

    28. [28]

      Liu J.F., Liang X., Chi Y.G.. High performance liquid chromatography determination of chlorophenols in water samples after preconcentration by continuous flow liquid membrane extraction on-line coupled with a precolumn[J]. Anal. Chim. Acta, 2003,487:129-135.

    29. [29]

      Cai Y.Q., Cai Y.E., Mou S.F., Lu Y.Q.. Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples[J]. J. Chromatogr. A, 2005,1081:245-247.

    30. [30]

      Wang J.T., Wang W.N., Wu Q.H., Wang C., Wang Z.. Extraction of some chlorophenols from environmental waters using a novel graphene-based magnetic nanocomposite followed by hplc determination[J]. J. Liq. Chromatogr. Relat. Technol., 2014,37:2349-2362.

    31. [31]

      Liu Q., Shi J.B., Zeng L.X.. Evaluation of graphene as an advantageous adsorbent for solid-phase extraction with chlorophenols as model analytes[J]. J. Chromatogr. A, 2011,1218:197-204.

  • 加载中
    1. [1]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    2. [2]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    3. [3]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2024.100210

    4. [4]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    5. [5]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    6. [6]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    7. [7]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    8. [8]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    9. [9]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    10. [10]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    11. [11]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    12. [12]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    13. [13]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    14. [14]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    15. [15]

      Hao WangMeng-Qi PanYa-Fei WangChao ChenJian XuYuan-Yuan GaoChuan-Song QiWei LiXian-He Bu . Post-synthetic modifications of MOFs by different bolt ligands for controllable release of cargoes. Chinese Chemical Letters, 2024, 35(10): 109581-. doi: 10.1016/j.cclet.2024.109581

    16. [16]

      Yan-Kai ZhangYong-Zheng ZhangChun-Xiao JiaFang WangXiuling ZhangYuhang WuZhongmin LiuHui HuDa-Shuai ZhangLonglong GengJing XuHongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756

    17. [17]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    18. [18]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    19. [19]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    20. [20]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

Metrics
  • PDF Downloads(14)
  • Abstract views(1072)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return