Citation: Li Wang, Xu Sheng-Wei, Xu Hui-Ren, Song Yi-Lin, Liu Jun-Tao, Luo Jin-Ping, Cai Xin-Xia. Spatio-temporally resolved measurement of quantal exocytosis from single cells using microelectrode array modified with poly L-lysine and poly dopamine[J]. Chinese Chemical Letters, ;2016, 27(5): 738-744. doi: 10.1016/j.cclet.2016.01.018 shu

Spatio-temporally resolved measurement of quantal exocytosis from single cells using microelectrode array modified with poly L-lysine and poly dopamine

  • Corresponding author: Cai Xin-Xia, xxcai@mail.ie.ac.cn
  • Received Date: 30 September 2015
    Revised Date: 26 October 2015
    Accepted Date: 22 January 2015
    Available Online: 22 May 2016

Figures(6)

  • The subsecond, temporal, vesicular exocytosis is ubiquitous, but difficult detecting in communication mechanisms of cells. A microelectrode array (MEA), fabricated by MEMS technology, was applied successfully for real-time monitoring of quantal exocytosis from single pheochromocytoma (PC12) cell. The developed MEA was evaluated by dopamine (DA) using electrochemical methods and the results revealed that the sensitivity of DA was improved to 12659.24 μA L mmol-1 cm-2. The modified MEA was used to detect in vitro vesicular exocytosis of DA from single PC12 cells stimulated by concentrated 100 μmol L-1 K+ cell solution. A total of 592 spikes were measured and analyzed by three parameters and the statistical results revealed the population of each parameter was an approximate Gaussian distribution, and on average, 1.31×106±9.25×104 oxidizable molecules were released in each quantal exocytosis. In addition, results also indicate that a single PC12 cell probably releases the spikes with T ranging from 25.6 ms to 35.4 ms corresponding to Imax ranging from 45.6 pA to 65.2 pA. The devices, including a homemade computer interface and the MEA modified with polymer film, provides a new means for further research on the neural, intercellular, communication mechanism.
  • 加载中
    1. [1]

      Auerbach A.A.. Spontaneous and evoked quantal transmitter release at a vertebrate central synapse[J]. Nat. New Biol., 1971,234:181-183.

    2. [2]

      Wightman R.M., Jankowski J.A., Kennedy R.T.. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells[J]. Proc. Nat. Acad. Sci. U.S.A., 1991,88:10754-10758.

    3. [3]

      You L.C., Cox Ⅲ R.S., Weiss R., Arnold F.H.. Programmed population control by cell-cell communication and regulated killing[J]. Nature, 2004,428:868-871.

    4. [4]

      Byrne M.B., Trump L., Desai A.V.. Microfluidic platform for the study of intercellular communication via soluble factor-cell and cell-cell paracrine signaling[J]. Biomicrofluidics, 2014,8.

    5. [5]

      Wallingford R.A., Ewing A.G.. Amperometric detection of catechols in capillary zone electrophoresis with normal and micellar solutions[J]. Anal. Chem., 1988,60:258-263.

    6. [6]

      Carabelli V., Gosso S., Marcantoni A.. Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells[J]. Biosens. Bioelectron., 2010,26:92-98.

    7. [7]

      Barg S., Olofsson C.S., Schriever-Abeln J.. Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells[J]. Neuron, 2002,33:287-299.

    8. [8]

      Krizhanovsky V., Yon M., Dickins R.A.. Senescence of activated stellate cells limits liver fibrosis[J]. Cell, 2008,134:657-667.

    9. [9]

      Gandasi N.R., Barg S.. Contact-induced clustering of syntaxin and munc18 docks secretory granules at the exocytosis site,[J]. Nat. Commun, 2014,53914.

    10. [10]

      Heidelberger R., Heinemann C., Neher E., Matthews G.. Calcium dependence of the rate of exocytosis in a synaptic terminal[J]. Nature, 1994,371:513-515.

    11. [11]

      Sugiura S., Nishimura S., Yasuda S., Hosoya Y., Katoh K.. Carbon fiber technique for the investigation of single-cell mechanics in intact cardiac myocytes[J]. Nat. Protoc., 2006,1:1453-1457.

    12. [12]

      Bae J., Song M.K., Park Y.J.. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angew. Chem. Int. Ed., 2011,50:1683-1687.

    13. [13]

      Normann R.A.. Technology insight:future neuroprosthetic therapies for disorders of the nervous system[J]. Nat. Clin. Pract. Neurol., 2007,3:444-452.

    14. [14]

      Lebedev M.A., Tate A.J., Hanson T.L.. Future developments in brain-machine interface research[J]. Clinics, 2011,66:25-32.

    15. [15]

      Normann R.A., Warren D.J., Ammermuller J., Fernandez E., Guillory S.. Highresolution spatio-temporal mapping of visual pathways using multi-electrode arrays[J]. Vision Res., 2001,41:1261-1275.

    16. [16]

      Seo M., Hillmyer M.A.. Reticulated nanoporous polymers by controlled polymerization-induced microphase separation[J]. Science, 2012,336:1422-1425.

    17. [17]

      Kibler A.B., Jamieson B.G., Durand D.M.. A high aspect ratio microelectrode array for mapping neural activity in vitro[J]. J. Neurosci. Methods, 2012,204:296-305.

    18. [18]

      Charkhkar H., Knaack G.L., Gnade B.E.. Development and demonstration of a disposable low-cost microelectrode array for cultured neuronal network recording[J]. Sens. Actuators B:Chem., 2012,161:655-660.

    19. [19]

      Brezesinski T., Wang J., Tolbert S.H., Dunn B.. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors[J]. Nat. Mater., 2010,9:146-151.

    20. [20]

      Omiatek D.M., Dong Y., Heien M.L., Ewing A.G.. Only a fraction of quantal content is released during exocytosis as revealed by electrochemical cytometry of secretory vesicles[J]. ACS Chem. Neurosci., 2010,1:234-245.

    21. [21]

      Elhamdani A., Palfrey H.C., Artalejo C.R.. Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells[J]. Neuron, 2001,31:819-830.

    22. [22]

      Wang L., Xu H.R., Song Y.L.. Highly sensitive detection of quantal dopamine secretion from pheochromocytoma cells using neural microelectrode array electrodeposited with polypyrrole graphene[J]. ACS Appl. Mater. Interfaces, 2015,7:7619-7626.

    23. [23]

      Wightman R.M., Haynes C.L.. Synaptic vesicles really do kiss and run[J]. Nat. Neurosci., 2004,7:321-322.

    24. [24]

      Joo S.H., Choi S.J., Oh I.. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature, 2001,412:169-172.

    25. [25]

      Zhou Z., Misler S.. Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons[J]. Proc. Nat. Acad. Sci. U.S.A., 1995,92:6938-6942.

    26. [26]

      Borges R., Camacho M., Gillis K.D.. Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods[J]. Acta Physiol., 2008,192:173-184.

    27. [27]

      Artalejo C.R., Adams M.E., Fox A.P.. Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells[J]. Nature, 1994,367:72-76.

    28. [28]

      Cahill P.S., Wightman R.M.. Simultaneous amperometric measurement of ascorbate and catecholamine secretion from individual bovine adrenal medullary cells[J]. Anal. Chem., 1995,67:2599-2605.

    29. [29]

      Ciolkowski E.L., Cooper B.R., Jankowski J.A., Jorgenson J.W., Wightman R.M.. Direct observation of epinephrine and norepinephrine cosecretion from individual adrenal medullary chromaffin cells[J]. J. Am. Chem. Soc., 1992,114:2815-2821.

    30. [30]

      Barizuddin S., Liu X., Mathai J.C.. Automated targeting of cells to electrochemical electrodes using a surface chemistry approach for the measurement of quantal exocytosis[J]. ACS Chem. Neurosci., 2010,1:590-597.

    31. [31]

      James C.D., Spence A.J.H., Dowell-Mesfin N.M.. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays[J]. IEEE Trans. Biomed. Eng., 2004,51:1640-1648.

    32. [32]

      Wang J., Su M.Y., Qi J.Q., Chang L.Q.. Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors[J]. Sens. Actuators B:Chem., 2009,139:418-424.

    33. [33]

      Fujishiro A., Kaneko H., Kawashima T., Ishida M., Kawano T.. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays[J]. Sci. Rep, 2014,44868.

    34. [34]

      Chang L.Q., Liu C.X., He Y.Z., Xiao H.H., Cai X.X.. Small-volume solution currenttime behavior study for application in reverse iontophoresis-based non-invasive blood glucose monitoring[J]. Sci. China Chem., 2011,54:223-230.

    35. [35]

      Patolsky F., Timko B.P., Yu G.H.. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays[J]. Science, 2006,313:1100-1104.

    36. [36]

      Spé gel C., Heiskanen A., Pedersen S.. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells[J]. Lab Chip, 2008,8:323-329.

    37. [37]

      Atlas D.. The voltage-gated calcium channel functions as the molecular switch of synaptic transmission[J]. Annu. Rev. Biochem., 2013,82:607-635.

    38. [38]

      Segura F., Brioso M.A., Gómez J.F., Machado J.D., Borges R.. Automatic analysis for amperometrical recordings of exocytosis[J]. J. Neurosci. Methods, 2000,103:151-156.

    39. [39]

      Nam Y., Wheeler B.C.. In vitro microelectrode array technology and neural recordings[J]. Crit. Rev. Biomed. Eng., 2011,39:45-61.

    40. [40]

      Huang Y.X., Cai D., Chen P.. Micro- and nanotechnologies for study of cell secretion[J]. Anal. Chem., 2011,83:4393-4406.

    41. [41]

      Sun W., Wang X.Z., Wang Y.H.. Application of graphene-SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine[J]. Electrochim. Acta, 2013,87:317-322.

    42. [42]

      Yu X.F., Yue K., Hsieh I.F.. Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering[J]. Proc. Nat. Acad. Sci. U.S.A., 2013,110:10078-10083.

    43. [43]

      Salgado R., del Rio R., Armijo F.. Selective electrochemical determination of dopamine, using a poly(3,4-ethylenedioxythiophene)/polydopamine hybrid film modified electrode[J]. J. Electroanal. Chem., 2013,704:130-136.

    44. [44]

      Ku S.H., Palanisamy S., Chen S.M.. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode[J]. J. Colloid Interface Sci., 2013,411:182-186.

    45. [45]

      Miao P., Wang B.D., Yu Z.Q., Zhao J., Tang Y.G.. Ultrasensitive electrochemical detection of microRNA with star trigon structure and endonuclease mediated signal amplification[J]. Biosens. Bioelectron., 2015,63:365-370.

    46. [46]

      Wang X.F., You Z., Sha H.L.. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode[J]. Talanta, 2014,128:373-378.

    47. [47]

      Cai W.H., Lai T., Du H.J., Ye J.S.. Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode:a high performance flexible sensor[J]. Sens. Actuators B:Chem., 2014,193:492-500.

    48. [48]

      Miao P., Liu L., Nie Y.J., Li G.. An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides[J]. Biosens. Bioelectron., 2009,24:3347-3351.

    49. [49]

      Chen F., Jiang X.P., Kuang T.R.. Polyelectrolyte/mesoporous silica hybrid materials for the high performance multiple-detection of pH value and temperature[J]. Polym. Chem., 2015,6:3529-3536.

    50. [50]

      Suresh R., Giribabu K., Manigandan R.. New electrochemical sensor based on Ni-doped V2O5 nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level[J]. Sens. Actuators B:Chem., 2014,202:440-447.

    51. [51]

      Damos F.S., Sotomayor M.P.T., Kubota L.T., Tanaka S.M.C.N., Tanaka A.A.. Iron(Ⅲ) tetra-(N-methyl-4-pyridyl)-porphyrin as a biomimetic catalyst of horseradish peroxidase on the electrode surface:an amperometric sensor for phenolic compound determinations[J]. Analyst, 2003,128:255-259.

    52. [52]

      Zhang W.B., Yu X.F., Wang C.L.. Molecular nanoparticles are unique elements for macromolecular science:from "nanoatoms" to giant molecules[J]. Macromolecules, 2014,47:1221-1239.

    53. [53]

      Flynn G.E., Johnson J.P., Zagotta W.N.. Cyclic nucleotide-gated channels:shedding light on the opening of a channel pore[J]. Nat. Rev. Neurosci., 2001,2:643-651.

    54. [54]

      Zweigerdt R., Olmer R., Singh H., Haverich A., Martin U.. Scalable expansion of human pluripotent stem cells in suspension culture[J]. Nat. Protoc., 2011,6:689-700.

  • 加载中
    1. [1]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    2. [2]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    3. [3]

      Xilin BaiWei DengJingjuan WangMing Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959

    4. [4]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    5. [5]

      Ting XieXun HeLang HeKai DongYongchao YaoZhengwei CaiXuwei LiuXiaoya FanTengyue LiDongdong ZhengShengjun SunLuming LiWei ChuAsmaa FaroukMohamed S. HamdyChenggang XuQingquan KongXuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005

    6. [6]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

Metrics
  • PDF Downloads(5)
  • Abstract views(683)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return