Spatio-temporally resolved measurement of quantal exocytosis from single cells using microelectrode array modified with poly L-lysine and poly dopamine
- Corresponding author: Cai Xin-Xia, xxcai@mail.ie.ac.cn
Citation: Li Wang, Xu Sheng-Wei, Xu Hui-Ren, Song Yi-Lin, Liu Jun-Tao, Luo Jin-Ping, Cai Xin-Xia. Spatio-temporally resolved measurement of quantal exocytosis from single cells using microelectrode array modified with poly L-lysine and poly dopamine[J]. Chinese Chemical Letters, ;2016, 27(5): 738-744. doi: 10.1016/j.cclet.2016.01.018
Auerbach A.A.. Spontaneous and evoked quantal transmitter release at a vertebrate central synapse[J]. Nat. New Biol., 1971,234:181-183.
Wightman R.M., Jankowski J.A., Kennedy R.T.. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells[J]. Proc. Nat. Acad. Sci. U.S.A., 1991,88:10754-10758.
You L.C., Cox Ⅲ R.S., Weiss R., Arnold F.H.. Programmed population control by cell-cell communication and regulated killing[J]. Nature, 2004,428:868-871.
Byrne M.B., Trump L., Desai A.V.. Microfluidic platform for the study of intercellular communication via soluble factor-cell and cell-cell paracrine signaling[J]. Biomicrofluidics, 2014,8.
Wallingford R.A., Ewing A.G.. Amperometric detection of catechols in capillary zone electrophoresis with normal and micellar solutions[J]. Anal. Chem., 1988,60:258-263.
Carabelli V., Gosso S., Marcantoni A.. Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells[J]. Biosens. Bioelectron., 2010,26:92-98.
Barg S., Olofsson C.S., Schriever-Abeln J.. Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells[J]. Neuron, 2002,33:287-299.
Krizhanovsky V., Yon M., Dickins R.A.. Senescence of activated stellate cells limits liver fibrosis[J]. Cell, 2008,134:657-667.
Gandasi N.R., Barg S.. Contact-induced clustering of syntaxin and munc18 docks secretory granules at the exocytosis site,[J]. Nat. Commun, 2014,53914.
Heidelberger R., Heinemann C., Neher E., Matthews G.. Calcium dependence of the rate of exocytosis in a synaptic terminal[J]. Nature, 1994,371:513-515.
Sugiura S., Nishimura S., Yasuda S., Hosoya Y., Katoh K.. Carbon fiber technique for the investigation of single-cell mechanics in intact cardiac myocytes[J]. Nat. Protoc., 2006,1:1453-1457.
Bae J., Song M.K., Park Y.J.. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angew. Chem. Int. Ed., 2011,50:1683-1687.
Normann R.A.. Technology insight:future neuroprosthetic therapies for disorders of the nervous system[J]. Nat. Clin. Pract. Neurol., 2007,3:444-452.
Lebedev M.A., Tate A.J., Hanson T.L.. Future developments in brain-machine interface research[J]. Clinics, 2011,66:25-32.
Normann R.A., Warren D.J., Ammermuller J., Fernandez E., Guillory S.. Highresolution spatio-temporal mapping of visual pathways using multi-electrode arrays[J]. Vision Res., 2001,41:1261-1275.
Seo M., Hillmyer M.A.. Reticulated nanoporous polymers by controlled polymerization-induced microphase separation[J]. Science, 2012,336:1422-1425.
Kibler A.B., Jamieson B.G., Durand D.M.. A high aspect ratio microelectrode array for mapping neural activity in vitro[J]. J. Neurosci. Methods, 2012,204:296-305.
Charkhkar H., Knaack G.L., Gnade B.E.. Development and demonstration of a disposable low-cost microelectrode array for cultured neuronal network recording[J]. Sens. Actuators B:Chem., 2012,161:655-660.
Brezesinski T., Wang J., Tolbert S.H., Dunn B.. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors[J]. Nat. Mater., 2010,9:146-151.
Omiatek D.M., Dong Y., Heien M.L., Ewing A.G.. Only a fraction of quantal content is released during exocytosis as revealed by electrochemical cytometry of secretory vesicles[J]. ACS Chem. Neurosci., 2010,1:234-245.
Elhamdani A., Palfrey H.C., Artalejo C.R.. Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells[J]. Neuron, 2001,31:819-830.
Wang L., Xu H.R., Song Y.L.. Highly sensitive detection of quantal dopamine secretion from pheochromocytoma cells using neural microelectrode array electrodeposited with polypyrrole graphene[J]. ACS Appl. Mater. Interfaces, 2015,7:7619-7626.
Wightman R.M., Haynes C.L.. Synaptic vesicles really do kiss and run[J]. Nat. Neurosci., 2004,7:321-322.
Joo S.H., Choi S.J., Oh I.. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature, 2001,412:169-172.
Zhou Z., Misler S.. Amperometric detection of stimulus-induced quantal release of catecholamines from cultured superior cervical ganglion neurons[J]. Proc. Nat. Acad. Sci. U.S.A., 1995,92:6938-6942.
Borges R., Camacho M., Gillis K.D.. Measuring secretion in chromaffin cells using electrophysiological and electrochemical methods[J]. Acta Physiol., 2008,192:173-184.
Artalejo C.R., Adams M.E., Fox A.P.. Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells[J]. Nature, 1994,367:72-76.
Cahill P.S., Wightman R.M.. Simultaneous amperometric measurement of ascorbate and catecholamine secretion from individual bovine adrenal medullary cells[J]. Anal. Chem., 1995,67:2599-2605.
Ciolkowski E.L., Cooper B.R., Jankowski J.A., Jorgenson J.W., Wightman R.M.. Direct observation of epinephrine and norepinephrine cosecretion from individual adrenal medullary chromaffin cells[J]. J. Am. Chem. Soc., 1992,114:2815-2821.
Barizuddin S., Liu X., Mathai J.C.. Automated targeting of cells to electrochemical electrodes using a surface chemistry approach for the measurement of quantal exocytosis[J]. ACS Chem. Neurosci., 2010,1:590-597.
James C.D., Spence A.J.H., Dowell-Mesfin N.M.. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays[J]. IEEE Trans. Biomed. Eng., 2004,51:1640-1648.
Wang J., Su M.Y., Qi J.Q., Chang L.Q.. Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors[J]. Sens. Actuators B:Chem., 2009,139:418-424.
Fujishiro A., Kaneko H., Kawashima T., Ishida M., Kawano T.. In vivo neuronal action potential recordings via three-dimensional microscale needle-electrode arrays[J]. Sci. Rep, 2014,44868.
Chang L.Q., Liu C.X., He Y.Z., Xiao H.H., Cai X.X.. Small-volume solution currenttime behavior study for application in reverse iontophoresis-based non-invasive blood glucose monitoring[J]. Sci. China Chem., 2011,54:223-230.
Patolsky F., Timko B.P., Yu G.H.. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays[J]. Science, 2006,313:1100-1104.
Spé gel C., Heiskanen A., Pedersen S.. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells[J]. Lab Chip, 2008,8:323-329.
Atlas D.. The voltage-gated calcium channel functions as the molecular switch of synaptic transmission[J]. Annu. Rev. Biochem., 2013,82:607-635.
Segura F., Brioso M.A., Gómez J.F., Machado J.D., Borges R.. Automatic analysis for amperometrical recordings of exocytosis[J]. J. Neurosci. Methods, 2000,103:151-156.
Nam Y., Wheeler B.C.. In vitro microelectrode array technology and neural recordings[J]. Crit. Rev. Biomed. Eng., 2011,39:45-61.
Huang Y.X., Cai D., Chen P.. Micro- and nanotechnologies for study of cell secretion[J]. Anal. Chem., 2011,83:4393-4406.
Sun W., Wang X.Z., Wang Y.H.. Application of graphene-SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine[J]. Electrochim. Acta, 2013,87:317-322.
Yu X.F., Yue K., Hsieh I.F.. Giant surfactants provide a versatile platform for sub-10-nm nanostructure engineering[J]. Proc. Nat. Acad. Sci. U.S.A., 2013,110:10078-10083.
Salgado R., del Rio R., Armijo F.. Selective electrochemical determination of dopamine, using a poly(3,4-ethylenedioxythiophene)/polydopamine hybrid film modified electrode[J]. J. Electroanal. Chem., 2013,704:130-136.
Ku S.H., Palanisamy S., Chen S.M.. Highly selective dopamine electrochemical sensor based on electrochemically pretreated graphite and nafion composite modified screen printed carbon electrode[J]. J. Colloid Interface Sci., 2013,411:182-186.
Miao P., Wang B.D., Yu Z.Q., Zhao J., Tang Y.G.. Ultrasensitive electrochemical detection of microRNA with star trigon structure and endonuclease mediated signal amplification[J]. Biosens. Bioelectron., 2015,63:365-370.
Wang X.F., You Z., Sha H.L.. Sensitive electrochemical detection of dopamine with a DNA/graphene bi-layer modified carbon ionic liquid electrode[J]. Talanta, 2014,128:373-378.
Cai W.H., Lai T., Du H.J., Ye J.S.. Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode:a high performance flexible sensor[J]. Sens. Actuators B:Chem., 2014,193:492-500.
Miao P., Liu L., Nie Y.J., Li G.. An electrochemical sensing strategy for ultrasensitive detection of glutathione by using two gold electrodes and two complementary oligonucleotides[J]. Biosens. Bioelectron., 2009,24:3347-3351.
Chen F., Jiang X.P., Kuang T.R.. Polyelectrolyte/mesoporous silica hybrid materials for the high performance multiple-detection of pH value and temperature[J]. Polym. Chem., 2015,6:3529-3536.
Suresh R., Giribabu K., Manigandan R.. New electrochemical sensor based on Ni-doped V2O5 nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level[J]. Sens. Actuators B:Chem., 2014,202:440-447.
Damos F.S., Sotomayor M.P.T., Kubota L.T., Tanaka S.M.C.N., Tanaka A.A.. Iron(Ⅲ) tetra-(N-methyl-4-pyridyl)-porphyrin as a biomimetic catalyst of horseradish peroxidase on the electrode surface:an amperometric sensor for phenolic compound determinations[J]. Analyst, 2003,128:255-259.
Zhang W.B., Yu X.F., Wang C.L.. Molecular nanoparticles are unique elements for macromolecular science:from "nanoatoms" to giant molecules[J]. Macromolecules, 2014,47:1221-1239.
Flynn G.E., Johnson J.P., Zagotta W.N.. Cyclic nucleotide-gated channels:shedding light on the opening of a channel pore[J]. Nat. Rev. Neurosci., 2001,2:643-651.
Zweigerdt R., Olmer R., Singh H., Haverich A., Martin U.. Scalable expansion of human pluripotent stem cells in suspension culture[J]. Nat. Protoc., 2011,6:689-700.
Chenghao Liu , Xiaofeng Lin , Jing Liao , Min Yang , Min Jiang , Yue Huang , Zhizhi Du , Lina Chen , Sanjun Fan , Qitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Xilin Bai , Wei Deng , Jingjuan Wang , Ming Zhou . Enrichment-enhanced detection strategy in the optimized monitoring system of dopamine with carbon dots-based probe. Chinese Chemical Letters, 2025, 36(2): 109959-. doi: 10.1016/j.cclet.2024.109959
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327
Ting Xie , Xun He , Lang He , Kai Dong , Yongchao Yao , Zhengwei Cai , Xuwei Liu , Xiaoya Fan , Tengyue Li , Dongdong Zheng , Shengjun Sun , Luming Li , Wei Chu , Asmaa Farouk , Mohamed S. Hamdy , Chenggang Xu , Qingquan Kong , Xuping Sun . CoSe2 nanowire array enabled highly efficient electrocatalytic reduction of nitrate for ammonia synthesis. Chinese Chemical Letters, 2024, 35(11): 110005-. doi: 10.1016/j.cclet.2024.110005
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262