Citation: Nagabhushana Nayak, Jurupula Ramprasad, Udayakumar Dalimba, Perumal Yogeeswari, Dharmarajan Sriram. Synthesis and antimycobacterial screening of new N-(4-(5-aryl-3-(5-methyl-1,3,4-oxadiazol-2-yl)-1H-pyrazol-1-yl)phenyl)-4-amide derivatives[J]. Chinese Chemical Letters, ;2016, 27(03): 365-369. doi: 10.1016/j.cclet.2016.01.015 shu

Synthesis and antimycobacterial screening of new N-(4-(5-aryl-3-(5-methyl-1,3,4-oxadiazol-2-yl)-1H-pyrazol-1-yl)phenyl)-4-amide derivatives

  • Corresponding author: Udayakumar Dalimba, 
  • Received Date: 3 April 2015
    Available Online: 29 July 2015

  • This article demonstrates the synthesis, characterization and the study of in vitro antitubercular activities of twenty four new N-(4-(5-aryl-3-(5-methyl-1,3,4-oxadiazol-2-yl)-1H-pyrazol-1-yl)phenyl)-4-amide derivatives (8a-x). The antitubercular activity of the compounds against Mycobacterium tuberculosis H37Rv (MTB) revealed that 2-chloro-N-(4-(5-(4-chlorophenyl)-3-(5-methyl-1,3,4-oxadiazol-2-yl)-1H-pyrazol-1-yl)phenyl)benzamide (8n) is the most promising lead molecule with a MIC of 1.56 μg/mL, while the corresponding unsubstituted benzamide derivative (8o) is the next most active molecule with a MIC of 3.13 μg/mL. Interestingly, the pyrazole intermediate 5b containing chlorophenyl and N-acylcarbohydrazide substituents also showed significant activity (MIC=3.13 μg/mL). Further, the active molecules did not show toxicity against a normal NIH 3T3 cell line, signifying their suitability for further drug development.
  • 加载中
    1. [1]

      [1] World Health Organization, Global Tuberculosis Report 2014, (accessed April 2015).

    2. [2]

      [2] L. Ballell, R.A. Field, K. Duncan, R.J. Young, New small-molecule synthetic antimycobacterials, Antimicrob. Agents Chemother. 49(2005) 2153-2163.

    3. [3]

      [3] A.A. Velayati, M.R. Masjedi, P. Farnia, et al., Emergence of new forms of totally drug-resistant tuberculosis bacillisuper extensively drug-resistant tuberculosis or totally drug-resistant strains in (Ⅰ)ran, Chest J. 136(2009) 420-425.

    4. [4]

      [4] S. Loewenberg, (Ⅰ)ndia reports cases of totally drug-resistant tuberculosis, Lancet 379(2012) 205.

    5. [5]

      [5] A.S. Fauci, Multidrug-resistant and extensively drug-resistant tuberculosis:the national institute of allergy and infectious diseases research agenda and recommendations for priority research, J. (Ⅰ)nfect. Dis. 197(2008) 1493-1498.

    6. [6]

      [6] A. Andreani, M. Granaiola, A. Leoni, et al., Synthesis and antitubercular activity of imidazo[21-b]thiazoles, Eur. J. Med. Chem. 36(2001) 743-746.

    7. [7]

      [7] S.G. Kini, A.R. Bhat, B. Bryant, J.S. Williamson, F.E. Dayan, Synthesis, antitubercular activity and docking study of novel cyclic azole substituted diphenyl ether derivatives, Eur. J. Med. Chem. 44(2009) 492-500.

    8. [8]

      [8] Y. Sheng, B. Sun, X. Xie, N. Li, D. Dong, DMH1(4-[6-(4-isopropoxyphenyl) pyrazolo[1,5-a]pyrimidin-3-yl]quinoline) inhibits chemotherapeutic drug-induced autophagy, Acta. Pharm. Sin., B 5(2015) 330-336.

    9. [9]

      [9] C. Han, Y.C. Guo, D.D. Wang, et al., Novel pyrazole fused heterocyclic ligands:synthesis, characterization. DNA binding/cleavage activity and anti-BVDV activity, Chin. Chem. Lett. 26(2015) 534-538.

    10. [10]

      [10] S.L. Wang, Y.J. Shi, H.B. He, et al., Synthesis and bioactivity of novel pyrazole oxime derivatives containing oxazole ring, Chin. Chem. Lett. 26(2015) 672-674.

    11. [11]

      [11] R.K. Arora, N. Kaur, Y. Bansal, G. Bansal, Novel coumarin-benzimidazole derivatives as antioxidants and safer anti-inflammatory agents, Acta. Pharm. Sin., B 4(2014) 368-375.

    12. [12]

      [12] N. Chandna, J.K. Kapoor, J. Grover, et al., Pyrazolylbenzyltriazoles as cyclooxygenase inhibitors:synthesis and biological evaluation as dual anti-inflammatory and antimicrobial agents, New J. Chem. 38(2014) 3662-3672.

    13. [13]

      [13] S.G. Alegaon, K.R. Alagawadi, M.K. Garg, K. Dushyant, D. Vinod, 1,3,4-Trisubstituted pyrazole analogues as promising anti-inflammatory agents, Bioorg. Chem. 54(2014) 51-59.

    14. [14]

      [14] B.V. Kendre, M.G. Landge, W.N. Jadhav, S.R. Bhusare, Synthesis and bioactivities of some new 1H-pyrazole derivatives containing an aryl sulfonate moiety, Chin. Chem. Lett. 24(2013) 325-328.

    15. [15]

      [15] A. Tanitame, Y. Oyamada, K. Ofuji, et al., Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives, J. Med. Chem. 47(2004) 3693-3696.

    16. [16]

      [16] G.M. Nitulescu, C. Draghici, M.C. Chifiriuc, et al., Synthesis and antimicrobial screening of N-(1-methyl-1H-pyrazole-4-carbonyl)-thiourea derivatives, Med. Chem. Res. 21(2012) 308-314.

    17. [17]

      [17] H.H. Jardosh, C.B. Sangani, M.P. Patel, R.G. Patel, One step synthesis of pyrido[1,2-a]benzimidazole derivatives of aryloxypyrazole and their antimicrobial evaluation, Chin. Chem. Lett. 24(2013) 123-126.

    18. [18]

      [18] A. Hall, A. Billinton, S.H. Brown, et al., Non-acidic pyrazole EP 1 receptor antagonists with in vivo analgesic efficacy, Bioorg. Med. Chem. Lett. 18(2008) 3392-3399.

    19. [19]

      [19] K.M. Dawood, T.M. Eldebss, H.S. El-Zahabi, M.H. Yousef, P. Metz, Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents, Eur. J. Med. Chem. 70(2013) 740-749.

    20. [20]

      [20] R.B. Pathak, P.T. Chovatia, H.H. Parekh, Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives, Bioorg. Med. Chem. Lett. 22(2012) 5129-5133.

    21. [21]

      [21] D. Castagnolo, A. De Logu, M. Radi, et al., Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis, Bioorg. Med. Chem. 16(2008) 8587-8591.

    22. [22]

      [22] D. Castagnolo, F. Manetti, M. Radi, et al., Synthesis, biological evaluation, and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis:Part 2. Synthesis of rigid pyrazolones, Bioorg. Med. Chem. 17(2009) 5716-5721.

    23. [23]

      [23] H. Chen, Z. Li, Y. Han, Synthesis and fungicidal activity against Rhizoctonia solani of 2-alkyl (alkylthio)-5-pyrazolyl-1,3,4-oxadiazoles (thiadiazoles), J. Agric. Food Chem. 48(2000) 5312-5315.

    24. [24]

      [24] G. Ş ahin, E. Palaska, M. Ekizoğlu, M.Özalp, Synthesis and antimicrobial activity of some 1,3,4-oxadiazole derivatives, (Ⅰ)l Farmaco 57(2002) 539-542.

    25. [25]

      [25] A. Zarghi, S.A. Tabatabai, M. Faizi, et al., Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-13,4-oxadiazoles, Bioorg. Med. Chem. Lett. 15(2005) 1863-1865.

    26. [26]

      [26] S. Valente, D. Trisciuoglio, T. De Luca, et al., 1,3,4-Oxadiazole-containing histone deacetylase inhibitors:anticancer activities in cancer cells, J. Med. Chem. 57(2014) 6259-6265.

    27. [27]

      [27] P. Miralinaghi, M. Salimi, A. Amirhamzeh, et al., Synthesis, molecular docking study, and anticancer activity of triaryl-1, 2,4-oxadiazole, Med. Chem. Res. 22(2013) 4253-4262.

    28. [28]

      [28] M.J. Ahsan, J.G. Samy, H. Khalilullah, et al., Molecular properties prediction and synthesis of novel 1,3,4-oxadiazole analogues as potent antimicrobial and antitubercular agents, Bioorg. Med. Chem. Lett. 21(2011) 7246-7250.

    29. [29]

      [29] M.J. Ahsan, J.G. Samy, C.B. Jain, et al., Discovery ofnovel antitubercular15-dimethyl-2-phenyl-4-([5-(arylamino)-1,3,4-oxadiazol-2-yl] methylamino)-1,2-dihydro-3Hpyrazol-3-one analogues, Bioorg. Med. Chem. Lett. 22(2012) 969-972.

    30. [30]

      [30] R.A. Rane, S.D. Gutte, N.U. Sahu, Synthesis and evaluation of novel 1,3,4-oxadiazole derivatives of marine bromopyrrole alkaloids as antimicrobial agent, Bioorg. Med. Chem. Lett. 22(2012) 6429-6432.

    31. [31]

      [31] R.A. Rane, P. Bangalore, S.D. Borhade, P.K. Khandare, Synthesis and evaluation of novel 4-nitropyrrole-based 1,3,4-oxadiazole derivatives as antimicrobial and anti-tubercular agents, Eur. J. Med. Chem. 70(2013) 49-58.

    32. [32]

      [32] P. Horrocks, M. Pickard, H. Parekh, S. Patel, R.B. Pathak, Synthesis and biological evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives, Org. Biomol. Chem. 11(2013) 4891-4898.

  • 加载中
    1. [1]

      Jiajia LvJie GaoHongyu LiZeli YuanNan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940

    2. [2]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    3. [3]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    4. [4]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    5. [5]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    6. [6]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    7. [7]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    8. [8]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    9. [9]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    10. [10]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    13. [13]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    14. [14]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    15. [15]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    16. [16]

      Qi TanRun-Zhu FanWencong YangGe ZouTao ChenJianying WuBo WangSheng YinZhigang She . (+)/(−)-Mycosphatide A, a pair of highly oxidized polyketides with lipid-lowering activity from the mangrove endophytic fungus Mycosphaerella sp. SYSU-DZG01. Chinese Chemical Letters, 2024, 35(9): 109390-. doi: 10.1016/j.cclet.2023.109390

    17. [17]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    18. [18]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    19. [19]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    20. [20]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

Metrics
  • PDF Downloads(1)
  • Abstract views(542)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return