Citation: Niu Yan-Hong, Yang Song, Li Ji-Kun, Xu Yan-Qing, Hu Chang-Wen. Design and synthesis of hybrid solids based on the tetravanadate core toward improved catalytic properties[J]. Chinese Chemical Letters, ;2016, 27(5): 649-654. doi: 10.1016/j.cclet.2016.01.007 shu

Design and synthesis of hybrid solids based on the tetravanadate core toward improved catalytic properties

  • Corresponding author: Xu Yan-Qing, xyq@bit.edu.cn Hu Chang-Wen, cwhu@bit.edu.cn
  • Received Date: 26 October 2015
    Revised Date: 14 December 2015
    Accepted Date: 30 December 2015
    Available Online: 13 May 2016

Figures(4)

  • Five inorganic-organic hybrid vanadates based on tetravanadate cores, transition metals and N-donor ligands have been designed and synthesized under hydrothermal conditions, namely, [Zn(eIM)3]2V4O12(1),[Zn(pIM)3]2V4O12·H2O(2),[Zn(ipIM)3]2V4O12(3),[Co(eIM)3]2V4O12·H2O(4),[Cu(eIM)2(H2O)]2V4O12(5) (eIM=1-ethylimidazole, pIM=1-propylimidazole, ipIM=isopropylimidazole). All compounds were fully characterized by single-crystal XRD, powder XRD, elemental analysis, TGA, and FT-IR spectroscopy. The hybrid zinc vanadates (1-3) and cobalt vanadate (4) exhibit interesting 2D folded structures and the hybrid copper vanadate (5) presents a 1D chain configuration. All compounds can catalyze olefin epoxidation reactions when using TBHP (TBHP=tert-butyl hydroperoxide) as an oxidant in acetonitrile. The introduction of transition metal ions into tetravanadate cores not only improved the catalytic activity but also fulfilled the heterogeneous catalytic behavior. 1-5 all exhibit extraordinary efficiency in converting olefins to the corresponding epoxides with high conversion and selectivity (particularly, conv. up to 97.1%, sele. up to 100% for 1). Leaching test was also carried out to prove the heterogeneous behavior.
  • 加载中
    1. [1]

      Trost B.M.. The atom economy-a search for synthetic efficiency[J]. Science, 1991,254:1471-1477.

    2. [2]

      Tonigold M., Lu Y., Volkmer D.. Heterogeneous catalytic oxidation by MFU-1:a cobalt(Ⅱ)-containing metal-organic framework[J]. Angew. Chem. Int. Ed., 2009,48:7546-7550.

    3. [3]

      Rich J., Manrique E., Romero I.. Catalytic activity of chloro and triflate manganese(Ⅱ) complexes in epoxidation reactions:reusable catalytic systems for alkene epoxidation[J]. Eur. J. Inorg. Chem., 2014,2014:2663-2670.

    4. [4]

      Caron S., Ragan J.A., Ripin D.H.B.. Large-scale oxidations in the pharmaceutical industry[J]. Chem. Rev., 2006,106:2943-2989.

    5. [5]

      Lane B.S., Burgess K.. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide[J]. Chem. Rev., 2003,103:2457-2474.

    6. [6]

      Herbert M., Alvarez E., Galindo A.. Olefin epoxidation by hydrogen peroxide catalysed by molybdenum complexes in ionic liquids and structural characterisation of the proposed intermediate dioxoperoxomolybdenum species[J]. Chem. Commun., 2010,46:5933-5935.

    7. [7]

      Thibodeaux C.J., Chang W.C., Liu H.W.. Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis[J]. Chem. Rev., 2012,112:1681-1709.

    8. [8]

      Girijesh K., Gulshan K., Rajeev G.. Manganese- and cobalt-based coordination networks as promising heterogeneous catalysts for olefin epoxidation reactions[J]. Inorg. Chem., 2015,54:2603-2615.

    9. [9]

      S.T. Oyama, in:S.T. Oyama (Ed.), Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis, Elsevier, Amsterdam, 2008, pp. 1-99.

    10. [10]

      J. Hagen, Industrial Catalysis:A Practical Approach, Wiley-VCH, Weinheim, 1999.

    11. [11]

      Breen J.M., Schmitt W.. Hybrid organic-inorganic polyoxometalates:functionalization of VIV/VV nanosized clusters to produce molecular capsules[J]. Angew. Chem. Int. Ed., 2008,120:7010-7014.

    12. [12]

      Antonova E., Näther C., Köerler P., Bensch W.. Die organische funktionalisierung von polyoxovanadaten:Sb-N-Bindungen und Ladungskontrolle[J]. Angew. Chem. Int. Ed., 2011,123:790-793.

    13. [13]

      Köerler P., Tsukerblat B., Müller A.. Structure-related frustrated magnetism of nanosized polyoxometalates:aesthetics and properties in harmony[J]. Dalton Trans., 2010,39:21-36.

    14. [14]

      Chen B.K., Chi Y.N., Hu C.W.. Three new imidazole-functionalized hexanuclear oxidovanadium clusters with exceptional catalytic oxidation properties for alcohols[J]. Chem. Eur. J., 2013,19:4408-4413.

    15. [15]

      Larrea E.S., Mesa J.L., Arriortua M.I.. nickel(Ⅱ) and copper(Ⅱ) with 1-(2-aminoethyl)piperazonium[J]. Dalton Trans., 2011,40:12690-12698.

    16. [16]

      de Luis R.F., Urtiage M.K., Arriortua M.I.. Thermal response, catalytic activity, and color change of the first hybrid vanadate containing bpe guest molecules[J]. Inorg. Chem., 2013,52:2615-2626.

    17. [17]

      Lin H., Maggard P.A.. Synthesis and structures of a new series of silver-vanadate hybrid solids and their optical and photocatalytic properties[J]. Inorg. Chem., 2008,47:8044-8052.

    18. [18]

      Hu Y., Luo F., Dong F.. Design synthesis and photocatalytic activity of a novel lilaclike silver-vanadate hybrid solid based on dicyclic rings of[V4O12]4- with {Ag7}7+ cluster[J]. Chem. Commun., 2011,47:761-763.

    19. [19]

      Luo L., Maggard P.A.. Effect of ligand coordination on the structures and visiblelight photocatalytic activity of manganese vanadate hybrids[J]. Cryst. Growth Des., 2013,13:5282-5288.

    20. [20]

      Li J.K., Huang X.Q., Chi Y.N., Hu C.W.. Four alkoxohexavanadate-based Pd-Polyoxovanadates as robust heterogeneous catalysts for oxidation of benzyl-alkanes[J]. Inorg. Chem., 2015,54:1454-1461.

    21. [21]

      Wu S.J., Lin Z.G., Hu C.W.. Synthesis, structure and characterization of three different dimension inorganic-organic hybrid vanadates::[Co2(mIM)5(-H2O)2]V4O12[Ni2(mIM)7(H2O)]V4O12·H2O and[Cd(eIM)2(H2O)]V2O6[J]. CrystEng-Comm, 2015,17:1625-1630.

    22. [22]

      Li J.K., Huang X.Q., Hu C.W.. Controllable synthesis, characterization, and catalytic properties of three inorganic-organic hybrid copper vanadates in the highly selective oxidation of sulfides and alcohols[J]. Cryst. Growth Des., 2015,15:1907-1914.

    23. [23]

      Kummar G., Kummar G., Gupta R.. Manganese- and cobalt-based coordination networks as promising heterogeneous catalysts for olefin epoxidation reactions[J]. Inorg. Chem., 2015,54:2603-2615.

    24. [24]

      Tabrizi L., Chiniforoshan H., Mcardle P.. A cobalt(Ⅱ) complex with anionic and neutral N-donor ligands:synthesis, crystal structure, and application as a heterogeneous catalyst for olefin epoxidation with tert-BuOOH[J]. J. Coord. Chem., 2015,68:980-992.

    25. [25]

      Gao J.K., Bai L.L., Zhang Q.H.. Co63-OH)6 cluster based coordination polymer as an effective heterogeneous catalyst for aerobic epoxidation of alkenes[J]. Dalton Trans., 2014,43:2559-2565.

    26. [26]

      Sankaralingam M., Palaniandavar M.. Tuning the olefin epoxidation by manganese(Ⅲ) complexes of bisphenolate ligands:effect of Lewis basicity of ligands on reactivity[J]. Dalton Trans., 2014,43:538-550.

    27. [27]

      G.M. Sheldrick, SHELXTL NT/v. 6.14, Bruker Analytical X-ray Systems, Madison, Wisconsin, 2000.

    28. [28]

      G.M. Sheldrick, SHELXS-97:Program for Crystal Structure Solution, Göttingen University, Göttingen, Germany, 1997.

    29. [29]

      Forster J., Rösner B., Khusniyarov M.M., Streb C.. Tuning the light absorption of a molecular vanadium oxide system for enhanced photooxidation performance[J]. Chem. Commun., 2011,47:3114-3116.

  • 加载中
    1. [1]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    2. [2]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    3. [3]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    4. [4]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    5. [5]

      Haiyang Gu Xiang Xu . Multicolor hybrid metal halides and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(9): 100352-100352. doi: 10.1016/j.cjsc.2024.100352

    6. [6]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    7. [7]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    8. [8]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    9. [9]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    10. [10]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    11. [11]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    12. [12]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    13. [13]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    14. [14]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    15. [15]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    16. [16]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    17. [17]

      Ji LiuDongsheng HeTianjiao HaoYumin HuYan ZhaoZhen LiChang LiuDaquan ChenQiyue WangXiaofei XinYan Shen . Gold mineralized "hybrid nanozyme bomb" for NIR-II triggered tumor effective permeation and cocktail therapy. Chinese Chemical Letters, 2024, 35(9): 109296-. doi: 10.1016/j.cclet.2023.109296

    18. [18]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    19. [19]

      Xu ZhangJiang LiKai-Zhou LuYa-Nan YangJian-Shuang JiangXiang YuanZi-Ming FengFei YePei-Cheng Zhang . Neosophoflavonoids A–C, A class of highly oxidized hybrid flavonoids from Sophora flavescens with antidiabetic effects. Chinese Chemical Letters, 2024, 35(10): 109456-. doi: 10.1016/j.cclet.2023.109456

    20. [20]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

Metrics
  • PDF Downloads(1)
  • Abstract views(706)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return