Citation: Liu Yuan-Yuan, Qi Jun-Mei, Bai Li-Sha, Xu Yue-Long, Ma Ning, Sun Fei-Fei. Graphite oxide-catalyzed acetylation of alcohols and phenols[J]. Chinese Chemical Letters, ;2016, 27(5): 726-730. doi: 10.1016/j.cclet.2016.01.005 shu

Graphite oxide-catalyzed acetylation of alcohols and phenols

  • Corresponding author: Ma Ning, mntju@tju.edu.cn Sun Fei-Fei, sff@tju.edu.cn
  • Received Date: 17 July 2015
    Revised Date: 22 December 2015
    Accepted Date: 24 December 2015
    Available Online: 11 May 2016

Figures(3)

  • Graphite oxide (GO) was used as a catalyst for the reactions of alcohols and phenols with acetic anhydride. The acetates of primary and secondary alcohols were prepared in good to excellent yields in short reaction time under mild conditions. Electron deficient phenols could be converted to the corresponding acetates steadily. As an efficient catalyst, GO is easily available, cheap, moderately toxic and weakly acidic.
  • 加载中
    1. [1]

      Wuts P.G.M., Greene T.W.. Greene's Protective Groups in Organic Synthesis, fourth ed., John Wiley and Sons[J]. New Jersey, 2007.

    2. [2]

      J. Otera, J. Nishikido, Esterification:Methods Reactions and Applications, second ed., WILEY-VCH Verlag GmbH & Co, Weinheim, 2010.

    3. [3]

      Khaligh N.G.. Poly(N-vinylimidazole) as an efficient catalyst for acetylation of alcohols, phenols, thiols and amines under solvent-free conditions[J]. RSC Adv., 2013,3:99-110.

    4. [4]

      Khazaei, Rostami, F.Mantashlo. p-Toluenesulfonyl chloride as a new and effective catalyst for acetylation and formylation of hydroxyl compounds under mild conditions[J]. Chin. Chem. Lett., 2010,21:1430-1434.

    5. [5]

      Shirini F., Sakhaei A.R., Abedini M.. V(HSO4)3 catalyzed chemoselectivity acetylation of alcohols and phenols in solution and under solvent-free conditions[J]. Chin. Chem. Lett., 2009,20:439-443.

    6. [6]

      Rajabi F.. A heterogeneous cobalt(Ⅱ) Salen complex as an efficient and reusable catalyst for acetylation of alcohols and phenols[J]. Tetrahedron Lett., 2009,50:395-397.

    7. [7]

      Chen D., Feng H.B., Li J.H.. Graphene oxide:preparation, functionalization, and electrochemical applications[J]. Chem. Rev., 2012,112:6027-6053.

    8. [8]

      Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S.. The chemistry of graphene oxide[J]. Chem. Soc. Rev., 2010,39:228-240.

    9. [9]

      Dreyer D.R., Todd A.D., Bielawski C.W.. Harnessing the chemistry of graphene oxide[J]. Chem. Soc. Rev., 2014,43:5288-5301.

    10. [10]

      Chua C.K., Pumera M.. Carbocatalysis:the state of "metal-free" catalysis[J]. Chem. Eur. J., 2015,21:12550-12562.

    11. [11]

      Navalon S., Dhakshinamoorthy A., Alvaro M., Garcia H.. Carbocatalysis by graphene-based materials[J]. Chem. Rev., 2014,114:6179-6212.

    12. [12]

      Dreyer D.R., Jia H.P., Bielawski C.W.. Graphene oxide:a convenient carbocatalyst for facilitating oxidation and hydration reactions[J]. Angew. Chem. Int. Ed., 2010,49:6813-6816.

    13. [13]

      Dreyer D.R., Jia H.P., Todd A.D., Geng J.X., Bielawski C.W.. Graphite oxide:a selective and highly efficient oxidant of thiols and sulfides[J]. Org. Biomol. Chem., 2011,9:7292-7295.

    14. [14]

      Kumari S., Shekhar A., Mungse H.P., Khatri O.P., Pathak D.D.. Metal-free one-pot synthesis of amides using graphene oxide as an efficient catalyst[J]. RSC Adv., 2014,4:41690-41695.

    15. [15]

      Dhakshinamoorthy A., Alvaro M., Concepción P., Forné s V., Garcia H.. Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides[J]. Chem. Commun., 2012,48:5443-5445.

    16. [16]

      Wang H.L., Deng T.S., Wang Y.X.. Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural[J]. Green Chem., 2013,15:2379-2383.

    17. [17]

      Gao X.Q., Zhu S.H., Li Y.W.. Graphene oxide as a facile solid acid catalyst for the production of bioadditives from glycerol esterification[J]. Catal. Commun., 2015,62:48-51.

    18. [18]

      Verma S., Mungse H.P., Kumar N.. Graphene oxide:an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes[J]. Chem. Commun., 2011,47:12673-12675.

    19. [19]

      Khodabakhshi S., Karami B., Eskandari K., Jafar Hoseinia S., Rashidib A.. Graphene oxide nanosheets promoted regioselective and green synthesis of new dicoumarols[J]. RSC Adv., 2014,4:17891-17895.

    20. [20]

      Su C.L., Tandiana R., Balapanuru J.. Tandem catalysis of amines using porous graphene oxide[J]. J. Am. Chem. Soc., 2015,137:685-690.

    21. [21]

      Qi J.M., Xu Y.L., Ma N., Sun F.F.. Graphite oxide-catalyzed esterification and transesterification[J]. Chin. J. Org. Chem., 2013,33:1839-1846.

    22. [22]

      Xu L., Yang A.W., Ma N.. Graphite oxide as an efficient and reusable catalyst for tetrahydropyranylation/depyranylation of alcohols and phenols[J]. Chin. J. Org. Chem., 2013,33:2004-2009.

    23. [23]

      Xu Y.L., Qi J.M., Sun F.F., Ma N.. Carbocatalysis:reduced graphene oxide-catalyzed Boc protection of hydroxyls and graphite oxide-catalyzed deprotection[J]. Tetrahedron Lett., 2015,56:2744-2748.

    24. [24]

      Hummers Jr. W.S., Offeman R.E.. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958,801339.

    25. [25]

      Dimiev A.M., Alemany L.B., Tour J.M.. Graphene oxide Origin of acidity, its instability in water, and a new dynamic structural model[J]. ACS Nano, 2013,7:576-588.

  • 加载中
    1. [1]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    2. [2]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    3. [3]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    4. [4]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    5. [5]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    6. [6]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    7. [7]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    8. [8]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    9. [9]

      Dongmei YaoJunsheng ZhengLiming JinXiaomin MengZize ZhanRunlin FanCong FengPingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382

    10. [10]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2024.100192

    11. [11]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    12. [12]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    13. [13]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    14. [14]

      Jiangping Chen Hongju Ren Kai Wu Huihuang Fang Chongqi Chen Li Lin Yu Luo Lilong Jiang . Boosting hydrogen production of ammonia decomposition via the construction of metal-oxide interfaces. Chinese Journal of Structural Chemistry, 2024, 43(2): 100236-100236. doi: 10.1016/j.cjsc.2024.100236

    15. [15]

      Ying ChenLi LiJunyao ZhangTongrui SunXuan ZhangShiqi ZhangJia HuangYidong Zou . Tailored ionically conductive graphene oxide-encased metal ions for ultrasensitive cadaverine sensor. Chinese Chemical Letters, 2024, 35(8): 109102-. doi: 10.1016/j.cclet.2023.109102

    16. [16]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    17. [17]

      Long LiKang YangChenpeng XiMengchao LiBorong LiGui XuYuanbin XiaoXiancai CuiZhiliang LiuLingyun LiYan YuChengkai Yang . Highly-chlorinated inert and robust interphase without mineralization of oxide enhancing high-rate Li metal batteries. Chinese Chemical Letters, 2024, 35(6): 108814-. doi: 10.1016/j.cclet.2023.108814

    18. [18]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    19. [19]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    20. [20]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

Metrics
  • PDF Downloads(3)
  • Abstract views(624)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return