Citation: Moustafa T. Gabr, Nadia S. El-Gohary, Eman R. El-Bendary, Mohamed M. El-Kerdawy, Nanting Ni. Synthesis, in vitro antitumor activity and molecular modeling studies of a new series of benzothiazole Schiff bases[J]. Chinese Chemical Letters, ;2016, 27(03): 380-386. doi: 10.1016/j.cclet.2015.12.033 shu

Synthesis, in vitro antitumor activity and molecular modeling studies of a new series of benzothiazole Schiff bases

  • Corresponding author: Nadia S. El-Gohary, 
  • Received Date: 22 April 2015
    Available Online: 7 September 2015

  • A new series of benzothiazole Schiff bases 3-29 was synthesized and screened for antitumor activity against cervical cancer (Hela) and kidney fibroblast cancer (COS-7) cell lines. Results indicated that compounds 3, 14, 19, 27 and 28 have promising activity against Hela cell line with IC50 values of 2.41, 3.06, 6.46, 2.22 and 6.25 μmol/L, respectively, in comparison to doxorubicin as a reference antitumor agent (IC50 2.05 μmol/L). In addition, compound 3 displayed excellent activity against COS-7 cell line with IC50 value of 4.31 μmol/L in comparison to doxorubicin (IC50 3.04 μmol/L). In the present work, structure based pharmacophore mapping, molecular docking, protein-ligand interaction, fingerprints and binding energy calculations were employed in a virtual screening strategy to identify the interaction between the compounds and the active site of the putative target, EGFR tyrosine kinase. Molecular properties, toxicity, drug-likeness, and drug score profiles of compounds 3, 14, 19, 27, 28 and 29 were also assessed.
  • 加载中
    1. [1]

      [1] Q. Liu, Y. Sabnis, Z. Zhao, et al., Developing irreversible inhibitors of the protein kinase cysteinome, Chem. Biol. 21(2013) 146-159.

    2. [2]

      [2] L.V. Peng-Cheng, C.F. Zhou, J. Chen, et al., Design, synthesis and biological evaluation of thiazolidinone derivatives as potential EGFR and HER-2 inhibitors, Bioorg. Med. Chem. Lett. 18(2010) 314-319.

    3. [3]

      [3] M. Reck, N.V. Zandwijk, C. Gridelli, et al., Erlotinib in advanced non-small cell lung cancer:efficacy and safety findings of the global phase (Ⅰ)V Tarceva lung cancer survival treatment study, J. Thorac. Oncol. 5(2010) 1616-1622.

    4. [4]

      [4] J. Smith, Erlotinib:small-molecule targeted therapy in the treatment of non smallcell lung cancer, Clin. Ther. 27(2005) 1513-1534.

    5. [5]

      [5] K. Tamura, M. Fukuoka, Gefitinib in non-small cell lung cancer, Expert Opin. Pharmacother. 6(2005) 985-993.

    6. [6]

      [6] P. Ballard, R.H. Bradbury, C.S. Harris, et al., (Ⅰ)nhibitors of epidermal growth factor receptor tyrosine kinase:optimisation of potency and in vivo pharmacokinetics, Bioorg. Med. Chem. Lett. 16(2006) 4908-4912.

    7. [7]

      [7] M. Ranson, Epidermal growth factor receptor tyrosine kinase inhibitors, Br. J. Cancer 90(2004) 2250-2255.

    8. [8]

      [8] M.N. Noolvi, H.M. Patel, M. Kaur, Benzothiazoles:search for anticancer agents, Eur. J. Med. Chem. 54(2012) 447-462.

    9. [9]

      [9] D. Fabbro, S. Ruetz, E. Buchdunger, et al., Protein kinases as targets for anticancer agents:from inhibitors to useful drugs, Pharmacol. Ther. 93(2002) 79-98.

    10. [10]

      [10] X.H. Shi, Z. Wang, Y. Xia, et al., Synthesis and biological evaluation of novel benzothiazole-2-thiol derivatives as potential anticancer agents, Molecules 17(2012) 3933-3944.

    11. [11]

      [11] H.S. Elzahabi, Synthesis, characterization of some benzazoles bearing pyridine moiety:search for novel anticancer agents, Eur. J. Med. Chem. 46(2011) 4025-4034.

    12. [12]

      [12] S. Saeed, N. Rashid, P.G. Jones, M. Ali, R. Hussain, Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents, Eur. J. Med. Chem. 45(2010) 1323-1331.

    13. [13]

      [13] W.P. Hu, Y.K. Chen, C.C. Liao, et al., Synthesis, and biological evaluation of 2-(4-aminophenyl)benzothiazole derivatives as photosensitizing agents, Bioorg. Med. Chem. 18(2010) 6197-6207.

    14. [14]

      [14] Y.A. Al-Soud, H.H. Al-Sa'doni, B. Saeed, et al., Synthesis and in vitro antiproliferative activity of new benzothiazole derivatives, ARK(Ⅰ)VOC xv (2008) 225-238.

    15. [15]

      [15] G.M. Catriona, W. Geoffrey, C.P. Jean, et al., Antitumor benzothiazoles. 26. 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW 610 NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon and breast cancer cell lines, J. Med. Chem. 49(2006) 179-185.

    16. [16]

      [16] E. Brantley, S. Antony, G. Kohlhagen, et al., Anti-tumor drug candidate 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole induces single-strand breaks and DNA-protein cross-links in sensitive MCF-7 breast cancer cells, Cancer Chemother. Pharmacol. 58(2006) 62-72.

    17. [17]

      [17] C.J. Lion, C.S. Matthews, G. Wells, et al., Antitumour properties of fluorinated benzothiazole-substituted hydroxycyclohexa-2,5-dienones (‘quinols’), Bioorg. Med. Chem. Lett. 16(2006) 5005-5008.

    18. [18]

      [18] N. Karali, O. Güzel, N. Ozsoy, S. Ozbey, A. Salman, Synthesis of new spiroindolinones incorporating a benzothiazole moiety as antioxidant agents, Eur. J. Med. Chem. 45(2010) 1068-1077.

    19. [19]

      [19] D. Cressier, C. Prouillac, P. Hernandez, et al., Synthesis, antioxidant properties and radioprotective effects of new benzothiazoles and thiadiazoles, Bioorg. Med. Chem. 17(2009) 5275-5284.

    20. [20]

      [20] S.E. Etaiw, D.M. Abd El-Aziz, E.H. Abd El-Zaher, E.A. Ali, Synthesis, spectral, antimicrobial and antitumor assessment of Schiff base derived from 2-aminobenzothiazole and its transition metal complexes, Spectrochim. Acta A:Mol. Biomol. Spectrosc. 79(2011) 1331-1337.

    21. [21]

      [21] P. Yadav, D. Chauhan, N.K. Sharma, S. Singhal, 2-Substituted hydrazino-6-fluoro-1,3-benzothiazole:synthesis and characterization of new novel antimicrobial agents, (Ⅰ)nt. J. ChemTech Res. 2(2010) 1209-1213.

    22. [22]

      [22] T. Mosmann, Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays, J. (Ⅰ)mmunol. Methods 65(1983) 55-63.

    23. [23]

      [23] F. Denizot, R. Lang, Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability, J. (Ⅰ)mmunol. Methods 89(1986) 271-277.

    24. [24]

      [24] D. Gerlier, T. Thomasset, Use of MTT colorimetric assay to measure cell activation, J. (Ⅰ)mmunol. Methods 94(1986) 57-63.

    25. [25]

      [25] G.B. Kristi, S. Thomas, S. Herald, Defective down regulation of receptor tyrosine kinases in cancer, Eur. Mol. Biol. Organ. 23(2004) 2707-2712.

    26. [26]

      [26] J. Zhang, P.L. Yang, N.S. Gray, Targeting cancer with small molecule kinase inhibitors, Nat. Rev. Cancer 9(2009) 28-39.

    27. [27]

      [27] B. Liu, B. Bernard, J.H. Wu, (Ⅰ)mpact of EGFR point mutations on the sensitivity to gefitinib:insights from comparative structural analyses and molecular dynamics simulations, Proteins 65(2006) 331-346.

    28. [28]

      [28] Z.A. Wainberg, A. Anghel, A.J. Desai, et al., Lapatinib, a dual EGFR and HER2 kinase inhibitor, selectively inhibits HER2-amplified human gastric cancer cells and is synergistic with trastuzumab in vitro and in vivo, Clin. Cancer Res. 16(2010) 1509-1519.

    29. [29]

      [29] C. Yun, T.J. Boggon, Y. Li, et al., Structures of lung cancer-derived EGFR mutants and inhibitor complexes:mechanism of activation and insights into differential inhibitor sensitivity, Cancer Cell 11(2007) 217-227.

    30. [30]

      [30] M. Cherry, D.H. Williams, Recent kinase inhibitor X-ray structures:mechanisms of inhibition and selectivity insights, Curr. Med. Chem. 11(2004) 663-673.

    31. [31]

      [31] S. Whittaker, R. Kirk, R. Hayward, et al., Gatekeeper mutations mediate resistance to BRAF-targeted therapies, Sci. Transl. Med. 2(2010) 35-41.

    32. [32]

      [32] E. Weisberg, P.W. Manley, S.W. Cowan-Jacob, A. Hochhaus, J.D. Griffin, Second generation inhibitors of BCR-ABL for the treatment of imatinib resistant chronic myeloid leukemia, Nat. Rev. Cancer 7(2007) 345-356.

    33. [33]

      [33] S. Sridhar, L. Seymour, F.A. Shepherd, (Ⅰ)nhibitors of epidermal growth factor receptors:a review of clinical research with a focus on non small-cell lung cancer, Lancet Oncol. 4(2003) 397-406.

    34. [34]

      [34] F.A. Sharma, R. Sharma, T. Tyagi, Receptor tyrosine kinase inhibitors as potent weapons in war against cancers, Curr. Pharm. Des. 15(2009) 758-776.

    35. [35]

      [35] S.L. Kinnings, R.M. Jackson, ReverseScreen3D:a structure-based ligand matching method to identify protein targets, J. Chem. (Ⅰ)nf. Model. 51(2011) 624-634.

    36. [36]

      [36] G. Wolber, T. Langer, LigandScout:3D pharmacophores derived from proteinbound ligands and their use as virtual screening filters, J. Chem. (Ⅰ)nf. Comput. Sci. 45(2005) 160-169.

    37. [37]

      [37] A. Grosdidier, V. Zoete, O. Michielin, SwissDock, a protein-small molecule docking web service based on EADock DSS, Nucleic Acids Res. 39(2011) W270-W277.

    38. [38]

      [38] P. Maass, T. Schulz-Gasch, M. Stahl, M. Rarey, ReCore:a fast and versatile method for scaffold hopping based on small molecule crystal structure conformations, J. Chem. (Ⅰ)nf. Model. 47(2007) 390-399.

    39. [39]

      [39] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46(2001) 3-26.

    40. [40]

      [40] D.F. Veber, S.R. Johnson, H.Y. Cheng, et al., Molecular properties that influence the oral bioavailability of drug candidates, J. Med. Chem. 45(2002) 2615-2623.

    41. [41]

      [41] A. Jarrahpour, J. Fathi, M. Mimouni, et al., Petra, Osiris and molinspiration (POM) together as a successful support in drug design:antibacterial activity and biopharmaceutical characterization of some azo Schiff bases, Med. Chem. Res. 19(2011) 1-7.

    42. [42]

      [42] A. Parvez, M. Jyotsna, M.H. Youssoufi, T. Ben Hadda, Theoretical calculations and experimental verification of the antibacterial potential of some monocyclic betalactames containing two synergetic buried antibacterial pharmacophore sites, Phosphorus Sulfur Silicon Relat. Elem. 7(2010) 1500-1510.

    43. [43]

      [43] A. Parvez, J. Meshram, V. Tiwari, et al., Pharmacophores modeling in terms of prediction of theoretical physicochemical properties and verification by experimental correlations of novel coumarin derivatives produced via Betti's protocol, Eur. J. Med. Chem. 45(2010) 4370-4378.

    44. [44]

      [44] P. Ertl, B. Rohde, P. Selzer, Fast calculation of molecular polar surface area (PSA) as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem. 43(2000) 3714-3717.

    45. [45]

      [45] O. Ursu, A. Rayan, A. Goldblum, T. Oprea, Understanding drug-likeness, W(Ⅰ)REs Comput. Mol. Sci. 1(2011) 760-781.

  • 加载中
    1. [1]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    4. [4]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    5. [5]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    6. [6]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    7. [7]

      Jin WangXiaoyan PanJunyu ZhangQingqing ZhangYanchen LiWeiwei GuoJie Zhang . Active molecule-based theranostic agents for tumor vasculature normalization and antitumor efficacy. Chinese Chemical Letters, 2024, 35(8): 109187-. doi: 10.1016/j.cclet.2023.109187

    8. [8]

      Zhaomin TangQian HeJianren ZhouShuang YanLi JiangYudong WangChenxing YaoHuangzhao WeiKeda YangJiajia Wang . Active-transporting of charge-reversal Cu(Ⅱ)-doped mesoporous silica nanoagents for antitumor chemo/chemodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109742-. doi: 10.1016/j.cclet.2024.109742

    9. [9]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    10. [10]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    11. [11]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    12. [12]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    13. [13]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    14. [14]

      Li LinSong-Lin TianZhen-Yu HuYu ZhangLi-Min ChangJia-Jun WangWan-Qiang LiuQing-Shuang WangFang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802

    15. [15]

      Minghao HuTianci XieYuqiang HuLongjie LiTing WangTongbo Wu . Allosteric DNAzyme-based encoder for molecular information transfer. Chinese Chemical Letters, 2024, 35(7): 109232-. doi: 10.1016/j.cclet.2023.109232

    16. [16]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    17. [17]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    18. [18]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    19. [19]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    20. [20]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

Metrics
  • PDF Downloads(0)
  • Abstract views(512)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return