Citation: Brahim Mabrouk Ben, Ammar Hafedh Belhadj, Abdelhédi Ridha, Samet Youssef. Electrochemical behavior and analytical detection of Imidacloprid insecticide on a BDD electrode using square-wave voltammetric method[J]. Chinese Chemical Letters, ;2016, 27(5): 666-672. doi: 10.1016/j.cclet.2015.12.032 shu

Electrochemical behavior and analytical detection of Imidacloprid insecticide on a BDD electrode using square-wave voltammetric method

  • Corresponding author: Brahim Mabrouk Ben, benbrahim.mabrouk@yahoo.com
  • Received Date: 27 May 2015
    Revised Date: 3 August 2015
    Accepted Date: 18 December 2015
    Available Online: 18 May 2016

Figures(11)

  • A sensitive square-wave voltammetric method for the determination of Imidacloprid (IMD) was developed using electrochemically pretreated boron-doped diamond (BDD) electrode. Aqueous solutions were prepared with Confidor 200 SL as the commercial formulation of IMD. Sodium sulfate (Na2SO4) was used as supporting electrolyte. The influence of operating parameters, such as the pH of the medium, frequency, pulse amplitude, scan increment and the concentration of IMD was investigated. An irreversible cathodic peak, corresponding to the reduction of IMD is observed at -1.21 V (vs. SCE) and the electrode reaction was controlled by adsorption. Under optimized conditions, the square-wave reduction peak current was linear over the concentration range of (30-200 μmol L-1) with a detection and quantification limits of 8.60 μmol L-1 and 28.67 μmol L-1, respectively. The results were compared with spectrophotometry and HPLC methods under some conditions and found to be in good agreement. To investigate applicability to real samples, the proposed method was applied to the determination of IMD in plum juice.
  • 加载中
    1. [1]

      Chao S.L., Casida J.E.. Interaction of imidacloprid metabolites and analogs with the nicotinic acetylcholine receptor of mouse brain in relation to toxicity[J]. Pestic. Biochem. Physiol., 1997,58:77-88.

    2. [2]

      Matsuda K., Shimomura M., Ihara M., Akamatsu M., Sattelle D.B.. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets:electrophysiology, molecular biology, and receptor modeling studies[J]. Biosci. Biotechnol. Biochem., 2005,69:1442-1452.

    3. [3]

      C.D.S. Tomlin, The Pesticide Manual:A World Compendium, 12th ed., British Crop Protection Council, Farnham, United Kingdom, 2000, pp. 591-593.

    4. [4]

      Chin-Chen M.L., Esteve-Romero J., Carda-Broch S.. Determination of the insecticide imidacloprid in fruit juices using micellar high-performance liquid chromatography[J]. J. AOAC Int., 2009,92:1551-1556.

    5. [5]

      Ting K.C., Zhou E.G., Saini N.. Determination of imidacloprid in fruits and vegetables by liquid chromatography with diode array and nitrogen-specific chemiluminescence detection[J]. J. AOAC Int., 2004,87:997-1002.

    6. [6]

      Obana H., Okihashi M., Akutsu K., Kitagawa Y., Hori S.. Determination of acetamiprid, imidacloprid, and nitenpyram residues in vegetables and fruits by highperformance liquid chromatography with diode array detection[J]. J. Agric. Food Chem., 2002,50:4464-4467.

    7. [7]

      Baskaran S., Kookana R.S., Naidu R.. Determination of the insecticide imidacloprid in water and soil using high-performance liquid chromatography[J]. J. Chromatogr. A, 1997,787:271-275.

    8. [8]

      Navalon A., González-Casado A., El-Khattabia R., Vilchez J.L., Fernández-Alba A.R.. Determination of imidacloprid in vegetable samples by gas chromatographymass spectrometry[J]. Analyst, 1997,122:579-581.

    9. [9]

      Vílchez J.L., Valencia M.C., Navalón A., Molinero-Morales B., Capitán-Vallvey L.F.. Flow injection analysis of the insecticide Imidacloprid in water samples with photochemically induced fluorescence detection[J]. Anal. Chim. Acta, 2001,439:299-305.

    10. [10]

      Vilchez J.L., El-Khattabi R., Blanc R., Navalón A.. Photochemical-fluorimetric method for the determination of the insecticide imidacloprid in water samples[J]. Anal. Chim. Acta, 1998,371:247-253.

    11. [11]

      Sánchez-Hernández L., Hernández-Domínguez D., Bernal J.. Capillary electrophoresis-mass spectrometry as a new approach to analyze neonicotinoid insecticides[J]. J. Chromatogr. A, 2014,1359:317-324.

    12. [12]

      Carretero A.S., Cruces-Blanco C., Durán S.P., Gutié rrez A.F.. Determination of imidacloprid and its metabolite 6-chloronicotinic acid in greenhouse air by application of micellar electrokinetic capillary chromatography with solid-phase extraction[J]. J. Chromatogr. A, 2003,1003:189-195.

    13. [13]

      Lee J.K., Ahn K.C., Park O.S., Kang S.Y., Hammock B.D.. Development of an ELISA for the detection of the residues of the insecticide imidacloprid in agricultural and environmental samples[J]. J. Agric. Food Chem., 2001,49:2159-2167.

    14. [14]

      Thriveni T., Kumar J.R., Lee J.Y., Sreedhar N.Y.. Study of the voltammetric behaviour of the ethalfluralin and methalpropalin and its determination in environmental matrices at hanging mercury drop electrode[J]. Environ. Monit. Assess., 2009,151:9-18.

    15. [15]

      Mercan H., Inam R.. Determination of the fungicide anilazine in soil and river water by differential pulse polarography[J]. Clean, 2008,36:913-919.

    16. [16]

      İnam R., Gülerman E.Z., Sarigül T.. Determination of triflumizole by differential pulse polarography in formulation, soil and natural water samples[J]. Anal. Chim. Acta, 2006,579:117-123.

    17. [17]

      Guzsvány V.J., Gaál F.F., Bjelica L.J., Okresz S.N.. Voltammetric determination of imidacloprid and thiamethoxam[J]. J. Serb. Chem. Soc., 2005,70:735-743.

    18. [18]

      Lei W., Wu Q.J., Si W.M.. Electrochemical determination of imidacloprid using poly(carbazole)/chemically reduced graphene oxide modified glassy carbon electrode[J]. Sens. Actuators, B:Chem., 2013,183:102-109.

    19. [19]

      Kumaravel A., Chandrasekaran M.. Electrochemical determination of imidacloprid using nanosilver Nafion®/nanoTiO2 Nafion® composite modified glassy carbon electrode[J]. Sens. Actuators, B:Chem., 2011,158:319-326.

    20. [20]

      Papp Z., Švancara I., Guzsvány V., Vytřas K., Gaál F.. Voltammetric determination of Imidacloprid insecticide in selected samples using a carbon paste electrode[J]. Microchim. Acta, 2009,166:169-175.

    21. [21]

      Papp Z., Guzsvány V., Švancara I., Vytřas K.. Voltammetric monitoring of photodegradation of Clothianidin, Nitenpyram and Imidacloprid insecticides using a tricresyl phosphate-based carbon paste electrode[J]. Int. J. Electrochem. Sci., 2011,6:5161-5171.

    22. [22]

      Guzsvány V., Papp Z., Zbiljić J., Vajdle O., Rodić M.. Bismuth modified carbonbased electrodes for the determination of selected neonicotinoid insecticides[J]. Molecules, 2011,16:4451-4466.

    23. [23]

      Majidi M.R., Asadpour-Zeynali K., Bamorowat M., Nazarpur M.. Determination of imidacloprid in tomato grown in Greenhouse based on copper (Ⅱ) phthalocyanine modified carbon ceramic electrode by differential pulse voltammetry[J]. J. Chin. Chem. Soc., 2011,58:207-214.

    24. [24]

      Guzsvány V., Kádár M., Papp Z., Bjelica L., Gaál F., Tóth K.. Monitoring of photocatalytic degradation of selected neonicotinoid insecticides by cathodic voltammetry with a bismuth film electrode[J]. Electroanalysis, 2008,20:291-300.

    25. [25]

      Guzsvány V., Petrović J., Krstić J.. Renewable silver-amalgam film electrode for voltammetric monitoring of solar photodegradation of imidacloprid in the presence of Fe/TiO2 and TiO2 catalysts[J]. J. Electroanal. Chem., 2013,699:33-39.

    26. [26]

      Guiberteau A., Galeano T., Mora N., Parrilla P., Salinas F.. Study and determination of the pesticide imidacloprid by square wave adsorptive stripping voltammetry[J]. Talanta, 2001,53:943-949.

    27. [27]

      Navalón A., El-Khattabi R., González-Casado A., Vilchez J.L.. Differential-pulse polarographic determination of the insecticide imidacloprid in commercial formulations[J]. Microchim. Acta, 1999,130:261-265.

    28. [28]

      Dai W., Li M.J., Li H.J., Yang B.H.. Amperometric biosensor based on nanoporous nickel/boron-doped diamond film for electroanalysis of L-alanine[J]. Sens. Actuators, B:Chem., 2014,201:31-36.

    29. [29]

      Bandžuchová L., Švorc L., Sochr J., Svítková J., Chýlková J.. Voltammetric method for sensitive determination of herbicide picloram in environmental and biological samples using boron-doped diamond film electrode[J]. Electrochim. Acta, 2013,111:242-249.

    30. [30]

      Bandžuchová L., Švorc L., Vojs M.. Self-assembled sensor based on borondoped diamond and its application in voltammetric analysis of picloram[J]. Int. J. Environ. Anal. Chem., 2014,94:943-953.

    31. [31]

      Levent A., Yardım Y., Şentürk Z.. Electrochemical performance of boron-doped diamond electrode in surfactant-containing media for ambroxol determination[J]. Sens. Actuators, B:Chem., 2014,203:517-526.

    32. [32]

      Švorc L., Rievaj M., Bustin D.. Green electrochemical sensor for environmental monitoring of pesticides:determination of atrazine in river waters using a borondoped diamond electrode[J]. Sens. Actuators, B:Chem., 2013,181:294-300.

    33. [33]

      Rao T.N., Loo B.H., Sarada B.V., Terashima C., Fujishima A.. Electrochemical detection of Carbamate pesticides at conductive diamond electrodes[J]. Anal. Chem., 2002,74:1578-1583.

    34. [34]

      Pecková K., Musilová J., Barek J.. Boron-doped diamond film electrodes-new tool for voltammetric determination of organic substances[J]. Crit. Rev. Anal. Chem., 2009,39:148-172.

    35. [35]

      Peckova K., Barek J.. Boron doped diamond microelectrodes and microelectrode arrays in organic electrochemistry[J]. Curr. Org. Chem., 2011,15:3014-3028.

    36. [36]

      Hupert M., Muck A., Wang R.. Conductive diamond thin-films in electrochemistry[J]. Diamond Relat. Mater., 2003,12:1940-1949.

    37. [37]

      Medeiros R.A., Lourencao B.C., Rocha-Filho R.C., Fatibello-Filho O.. Simultaneous voltammetric determination of synthetic colorants in food using a cathodically pretreated boron-doped diamond electrode[J]. Talanta, 2012,97:291-297.

    38. [38]

      Salazar-Banda G.R., Andrade L.S., Nascente P.A.P.. On the changing electrochemical behaviour of boron-doped diamond surfaces with time after cathodic pre-treatments[J]. Electrochim. Acta, 2006,51:4612-4619.

    39. [39]

      Suffredini H.B., Pedrosa V.A., Codognoto L.. Enhanced electrochemical response of boron-doped diamond electrodes brought on by a cathodic surface pre-treatment[J]. Electrochim. Acta, 2004,49:4021-4026.

    40. [40]

      Perret A., Haenni W., Skinner N.. Electrochemical behavior of synthetic diamond thin film electrodes[J]. Diamond Relat. Mater., 1999,8:820-823.

    41. [41]

      O'Dea J.J., Ribes A., Osteryoung J.G.. Square-wave voltammetry applied to the totally irreversible reduction of adsorbate[J]. J. Electroanal. Chem., 1993,345:287-301.

    42. [42]

      Lovrić M., Komorsky-Lovrić Š., Murray R.W.. Adsorption effects in square-wave voltammetry of totally irreversible redox reactions[J]. Electrochim. Acta, 1988,33:739-744.

    43. [43]

      A.E. Bretnall, G.S. Clarke, Validation of analytical test methods, in:A. Satinder, S. Stephen (Eds.), Separation Science and Technology, Academic Press, New York, 2011, p.429.

    44. [44]

      D.A. Skoog, F.J. Holler, T.A. Nieman, Principles of Instrumental Analysis, fifth ed., Saunders College Publishing, Philadelphia, PA, 1998(pp. 13, 15-18).

  • 加载中
    1. [1]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    2. [2]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    3. [3]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    4. [4]

      Tingting HuangZhuanlong DingHao LiuPing-An ChenLongfeng ZhaoYuanyuan HuYifan YaoKun YangZebing Zeng . Electron-transporting boron-doped polycyclic aromatic hydrocarbons: Facile synthesis and heteroatom doping positions-modulated optoelectronic properties. Chinese Chemical Letters, 2024, 35(4): 109117-. doi: 10.1016/j.cclet.2023.109117

    5. [5]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    6. [6]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    7. [7]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    8. [8]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    9. [9]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    10. [10]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    11. [11]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    12. [12]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    13. [13]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    14. [14]

      Chuang LIULichao SUNQingfeng ZHANG . Chiral inorganic nanocatalysts for electrochemical and enzyme-mimicked biosensing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 59-78. doi: 10.11862/CJIC.20240406

    15. [15]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2024.100193

    16. [16]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    17. [17]

      Zihong LiJie ChengPing HuangGuoliang WuWeiying Lin . Activatable photoacoustic bioprobe for visual detection of aging in vivo. Chinese Chemical Letters, 2024, 35(4): 109153-. doi: 10.1016/j.cclet.2023.109153

    18. [18]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    19. [19]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    20. [20]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

Metrics
  • PDF Downloads(4)
  • Abstract views(777)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return