Citation: Shou-Jun Guo, Jie Bai, Hai-Ou Liang, Chun-Ping Li. The controllable preparation of electrospun carbon fibers supported Pd nanoparticles catalyst and its application in Suzuki and Heck reactions[J]. Chinese Chemical Letters, ;2016, 27(03): 459-463. doi: 10.1016/j.cclet.2015.12.029 shu

The controllable preparation of electrospun carbon fibers supported Pd nanoparticles catalyst and its application in Suzuki and Heck reactions

  • Corresponding author: Jie Bai, 
  • Received Date: 14 September 2015
    Available Online: 9 December 2015

    Fund Project: The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No.21266016). (No.21266016)

  • The palladium nanoparticles/carbon nanofibers (Pd NPs/CNFs) catalyst was prepared by the electrospinning method, the hydrazine hydrate solution reduction in an ice bath environment, the high temperature carbonization. The catalyst was characterized by X-ray diffraction (XRD), fieldemission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). The nanofibers are not cross-linked and arranged in order. The surface of Pd NPs/CNFs is smooth, and it can be observed that a large number of particleswere loaded and well-dispersed in carbon fiber matrix, and the particle distribution is uniform. The activity center of catalyst is Pd(0). The Pd NPs/CNFs exhibited a high efficiency, good reusability and stability in the Suzuki and Heck reactions. It can be used for at least five consecutive runs without significant loss of its catalytic activity. The good recyclability of Pd NPs/CNFs provides a way to greatly reduce the cost of the catalyst.
  • 加载中
    1. [1]

      [1] P.R. Rao Vadaparthi, C.H. Pavan Kumar, K. Kumar, et al., Synthesis of costunolide derivatives by Pd-catalyzed Heck arylation and evaluation of their cytotoxic activities, Med. Chem. Res. 24(2015) 2871-2878.

    2. [2]

      [2] S. Das, S. Jana, B. Dutta, S. Koner, Synthesis of symmetrically functionalized oligo (p-phenylenevinylene) by Pd-catalyzed Heck coupling reaction, Res. Chem. (Ⅰ)ntermed. 41(2015) 4825-4832.

    3. [3]

      [3] P.C. Rodrigues, B.D. Fontes, B.B.M. Torres, et al., Synthesis of a PPV-fluorene derivative:applications in luminescent devices, J. Appl. Polym. Sci. 132(2015) 42579.

    4. [4]

      [4] (Ⅰ). Favier, D. Madec, E. Teuma, M. Gomez, Palladium nanoparticles applied in organic synthesis as catalytic precursors, Curr. Org. Chem. 15(2011) 3127-3174.

    5. [5]

      [5] A. Fihri, M. Bouhrara, B. Nekoueishahraki, J.M. Basset, V. Polshettiwar, Nanocatalysts for Suzuki cross-coupling reactions, Chem. Soc. Rev. 40(2011) 5181-5203.

    6. [6]

      [6] J. Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Aryl-aryl bond formation one century after the discovery of the Ullmann reaction, Chem. Rev. 102(2002) 1359-1470.

    7. [7]

      [7] X.M. Chen, G.H. Wu, J.M. Chen, et al., Synthesis of "Clean" and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide, J. Am. Chem. Soc. 133(2011) 3693-3695.

    8. [8]

      [8] G.M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth, R. Mülhaupt, Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki-Miyaura coupling reaction, J. Am. Chem. Soc. 131(2009) 8262-8270.

    9. [9]

      [9] M.X. Chen, Z. Zhang, L.Z. Li, et al., Fast synthesis of Ag-Pd@reduced graphene oxide bimetallic nanoparticles and their applications as carbon-carbon coupling catalysts, RSC Adv. 4(2014) 30914-30922.

    10. [10]

      [10] M. Amini, A. Tarassoli, S. Yousefi, et al., Suzuki-Miyaura cross-coupling reactions in water using in situ generated palladium(Ⅱ)-phosphazane complexes, Chin. Chem. Lett. 25(2014) 166-168.

    11. [11]

      [11] M. Bakherad, A. Keivanloo, B. Bahramian, S. Jajarmi, Suzuki, Heck, and copper-free Sonogashira reactions catalyzed by 4-amino-5-methyl-3-thio-1, 2, 4-triazolefunctionalized polystyrene resin-supported Pd(Ⅱ) under aerobic conditions in water, J. Organomet. Chem. 724(2013) 206-212.

    12. [12]

      [12] Y.H. Qin, Y. Jiang, H.H. Yang, et al., Synthesis of highly dispersed and active palladium/carbon nanofiber catalyst for formic acid electrooxidation, J. Power Sources 196(2011) 4609-4612.

    13. [13]

      [13] Y.S. Feng, X.Y. Lin, J. Hao, H.J. Xu, Pd-Co bimetallic nanoparticles supported on graphene as a highly active catalyst for Suzuki-Miyaura and Sonogashira crosscoupling reactions, Tetrahedron 70(2014) 5249-5253.

    14. [14]

      [14] S. Keesara, S. Parvathaneni, G. Dussa, M.R. Mandapati, Polystyrene supported thiopseudourea Pd (Ⅱ) complex:applications for Sonogashira, Suzuki-Miyaura, Heck, Hiyama and Larock heteroannulation reactions, J. Organomet. Chem. 765(2014) 31-38.

    15. [15]

      [15] L.J. Shao, C.Z. Qi, Supported palladium nanoparticles on preoxidated polyacrylonitrile fiber mat for coupling reactions, Fibers Polym. 15(2014) 2233-2237.

    16. [16]

      [16] M. Ghiaci, D. Valikhani, Z. Sadeghi, Synthesis and characterization of silicasupported Pd nanoparticles and its application in the Heck reaction, Chin. Chem. Lett. 23(2012) 887-890.

    17. [17]

      [17] H. Yang, D. Shi, S.F. Ji, D.N. Zhang, X.F. Liu, Nanosized Pd assembled on superparamagnetic core-shell microspheres:synthesis, characterization and recyclable catalytic properties for the Heck reaction, Chin. Chem. Lett. 25(2014) 1265-1270.

    18. [18]

      [18] S. Jadhava, A. Kumbharb, R. Salunkhe, Palladium supported on silica-chitosan hybrid material (Pd-CS@SiO2) for Suzuki-Miyaura and Mizoroki-Heck crosscoupling reactions, Appl. Organomet. Chem. 29(2015) 339-345.

    19. [19]

      [19] C.C. Huang, C. Li, G.Q. Shi, Graphene based catalysts, Energy Environ. Sci. 5(2012) 8848-8868.

    20. [20]

      [20] T. Van Haasterecht, C.C.(Ⅰ). Ludding, K.P. De Jong, J.H. Bitter, Stability and activity of carbon nanofiber-supported catalysts in the aqueous phase reforming of ethylene glycol, J. Energy Chem. 22(2013) 257-269.

    21. [21]

      [21] L.J. Shao, C.Z. Qi, Preoxidated polyacrylonitrile fiber mats supported copper catalyst for Mizoroki-Heck cross-coupling reactions, Appl. Catal. A 468(2013) 26-31.

    22. [22]

      [22] J. Kang, R.R. Han, J. Wang, et al., (Ⅰ)n situ synthesis of nickel carbide-promoted nickel/carbon nanofibers nanocomposite catalysts for catalytic applications, Chem. Eng. J. 275(2015) 36-44.

    23. [23]

      [23] Z.Y. Wu, X.X. Xu, B.C. Hu, et al., (Ⅰ)ron carbide nanoparticles encapsulated in mesoporous Fe-N-Doped carbon nanofibers for efficient electrocatalysis, Angew. Chem. (Ⅰ)nt. Ed. 54(2015) 8179-8183.

    24. [24]

      [24] J. Zhu, J.H. Zhou, T.J. Zhao, et al., Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction, Appl. Catal. A 352(2009) 243-250.

    25. [25]

      [25] X.W. Peng, W. Ye, Y.C. Ding, et al., Facile synthesis, characterization and application of highly active palladium nano-network structures supported on electrospun carbon nanofibers, RSC Adv. 4(2014) 42732-42736.

    26. [26]

      [26] L.P. Guo, J. Bai, C.P. Li, et al., Fabrication of palladium nanoparticles-loaded carbon nanofibers catalyst for the Heck reaction, N. J. Chem. 37(2013) 4037-4044.

    27. [27]

      [27] W.X. Zhang, J. Liu, G. Wu, Evolution of structure and properties of PAN precursors during their conversion to carbon fibers, Carbon 41(2003) 2805-2812.

    28. [28]

      [28] C.Y. Su, J. Liu, C.L. Shao, Y.C. Liu, Controlled synthesis of PAN/Ag2S composites nanofibers via electrospinning-assisted hydro (solvo) thermal method, J. Non-Cryst. Solids 357(2011) 1488-1493.

    29. [29]

      [29] Y. Wang, J. Liu, J.Y. Liang, Thermo-chemical reactions of modified PAN fibers during heat-treatment process, Adv. Mater. Res. 11-12(2006) 73-76.

    30. [30]

      [30] L.P. Guo, J. Bai, J.Z. Wang, et al., Fabricating series of controllable-porosity carbon nanofibers-based palladium nanoparticles catalyst with enhanced performances and reusability, J. Mol. Catal. 400(2015) 95-103.

    31. [31]

      [31] S.J. Zhang, S.X. Chen, Q.K. Zhang, P.Y. Li, C.E. Yuan, Preparation and characterization of an ion exchanger based on semi-carbonized polyacrylonitrile fiber, React. Funct. Polym. 68(2008) 891-898.

  • 加载中
    1. [1]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    6. [6]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    7. [7]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    8. [8]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    9. [9]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    10. [10]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    11. [11]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    12. [12]

      Yaxin SunHuiyu LiShiquan GuoCongju Li . Metal-based cathode catalysts for electrocatalytic ORR in microbial fuel cells: A review. Chinese Chemical Letters, 2024, 35(5): 109418-. doi: 10.1016/j.cclet.2023.109418

    13. [13]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    14. [14]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    15. [15]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    16. [16]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    17. [17]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    18. [18]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    19. [19]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    20. [20]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

Metrics
  • PDF Downloads(0)
  • Abstract views(512)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return