Citation: Ting Zhang, Dong-Qing Xu, Jun-Ming Chen, Ping Zhang, Xu-Chun Wanga. Synthesis and characterization of carbazole-based dendrimers as bipolar host materials for green phosphorescent organic light emitting diodes[J]. Chinese Chemical Letters, ;2016, 27(03): 441-446. doi: 10.1016/j.cclet.2015.12.028 shu

Synthesis and characterization of carbazole-based dendrimers as bipolar host materials for green phosphorescent organic light emitting diodes

  • Corresponding author: Ting Zhang, 
  • Received Date: 7 July 2015
    Available Online: 10 September 2015

    Fund Project: We thank the Natural Science Foundation of Anhui Province (Nos.KJ2013A079, KJ2016A184) (Nos.KJ2013A079, KJ2016A184)

  • Agroup of novel, carbazole-based dendrimers comprised of the electron-accepting dibenzothiophene core and the electron-donating oligo-carbazole dendrons, namely G1SF and G2SF, are synthesized utilizing the Ullmann C-N coupling reaction. The dendrimers are designed in such a way to show good solubility in common organic solvents, excellent thermochemical stability withdecomposition temperatures (Td) upto 430℃, and high HOMO levels in a range from -5.45 eV to -5.37 eV. Results of density functional theory calculations (DFT) indicate G2SF has an almost complete separation ofHOMOandLUMOlevels at the holeand electron-transporting moieties; while G1SF exhibits only partial separation of the HOMO and LUMO levels possibly due to intramolecular charge transfer. Green phosphorescent OLEDs were fabricated by the spin coating method with the dendrimers as hosts and traditional green iridium phosphor as doped emitter. Under ambient conditions, a maximumluminance efficiency (ηL) of 19.83 cd A-1 and a maximum external quantum efficiency of 5.85% are achieved for G1SF, and 15.50 cd A-1 and 4.57% for G2SF.
  • 加载中
    1. [1]

      [1] Y.T. Tao, C.L. Yang, J.Q. Qin, Organic host materials for phosphorescent organic light-emitting diodes, Chem. Soc. Rev. 40(2011) 2943-2970.

    2. [2]

      [2] C.H. Chang, M.C. Kuo, W.C. Lin, et al., A dicarbazole-triazine hybrid bipolar host material for highly efficient green phosphorescent OLEDs, J. Mater. Chem. 22(2012) 3832-3838.

    3. [3]

      [3] C.W. Lee, J.Y. Lee, High quantum efficiency and color stability in white phosphorescent organic light emitting diodes using a pyridine modified carbazole derivative, Dyes Pigments 103(2014) 34-38.

    4. [4]

      [4] M.R. Zhu, T.L. Ye, X.S. He, et al., Highly efficient solution-processed green and red electrophosphorescent devices enabled by small-molecule bipolar host material, J. Mater. Chem. 21(2011) 9326-9331.

    5. [5]

      [5] C.Y. Jiang, W. Yang, J.B. Peng, S. Xiao, Y. Cao, High-efficiency, saturated redphosphorescent polymer light-emitting diodes based on conjugated and nonconjugated polymers doped with an (Ⅰ)r complex, Adv. Mater. 16(2004) 537-541.

    6. [6]

      [6] J. Liu, Q.G. Zhou, Y.X. Cheng, et al., The first single polymer with simultaneous blue, green, and red emission for white electroluminescence, Adv. Mater. 17(2005) 2974-2978.

    7. [7]

      [7] Z.H. Ma, J.Q. Ding, B.H. Zhang, et al., Red-emitting polyfluorenes grafted with quinoline-based iridium complex:"Simple polymeric chain, unexpected high efficiency", Adv. Funct. Mater. 20(2010) 138-146.

    8. [8]

      [8] D. Liu, Y.H. Duan, Synthesis of novel thieno-[3,4-b]-pyrazine-cored molecules as red fluorescent materials, Chin. Chem. Lett. 24(2013) 809-812.

    9. [9]

      [9] J.Y. Li, T. Zhang, Y.J. Liang, R.X. Yang, Solution-processible carbazole dendrimers as host materials for highly efficient phosphorescent organic light-emitting diodes, Adv. Funct. Mater. 23(2013) 619-628.

    10. [10]

      [10] C. Huang, C.G. Zhen, S.P. Su, et al., High-efficiency solution processable electrophosphorescent iridium complexes bearing polyphenylphenyl dendron ligands, J. Organomet. Chem. 694(2009) 1317-1324.

    11. [11]

      [11] J.H. Zou, H. Wu, C.S. Lam, et al., Simultaneous optimization of charge-carrier balance and luminous efficacy in highly efficient white polymer light-emitting devices, Adv. Mater. 23(2011) 2976-2980.

    12. [12]

      [12] J.Q. Ding, J.H. Lü, Y.X. Cheng, Z.Y. Xie, L.X. Wang, Solution-processible red iridium dendrimers based on oligocarbazole host dendrons:synthesis, properties, and their applications in organic light-emitting diodes, Adv. Funct. Mater. 18(2008) 2754-2762.

    13. [13]

      [13] Q.S. Zhang, D. Tsang, H. Kuwabara, et al., Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters, Adv. Mater. 27(2015) 2096-2100.

    14. [14]

      [14] M.S. Lin, L.C. Chi, H.W. Chang, et al., A diarylborane-substituted carbazole as a universal bipolar host material for highly efficient electrophosphorescence devices, J. Mater. Chem. 22(2012) 870-876.

    15. [15]

      [15] W.Y. Huang, T.C. Wang, H.C. Chiu, H.F. Chenb, K.T. Wong, A spiro-configured ambipolar host material for impressively efficient single-layer green electrophosphorescent devices, Phys. Chem. Chem. Phys. 12(2010) 10685-10687.

    16. [16]

      [16] Y.T. Tao, Q. Wang, C.L. Yang, et al., A simple carbazole/oxadiazole hybrid molecule:an excellent bipolar host for green and red phosphorescent OLEDs, Angew. Chem. (Ⅰ)nt. Ed. Engl. 47(2008) 8104-8107.

    17. [17]

      [17] Q. Peng, M.J. Li, S.Q. Lu, X.H. Tang, An efficient blue-emitting conjugated copolymer based on fluorene and carbazole with a peripheral dendritic carbazole pendant at the 9-position, Macromol. Rapid Commun. 28(2007) 785-791.

    18. [18]

      [18] K.T. Wong, Y.H. Lin, H.H. Wu, F. Fungo, Synthesis and properties of dumbbellshaped dendrimers containing 9-phenylcarbazole dendrons, Org. Lett. 9(2007) 4531-4534.

    19. [19]

      [19] C.W. Wu, C.M. Tsai, H.C. Lin, Synthesis and characterization of poly (fluorene)-based copolymers containing various 1,3,4-oxadiazole dendritic pendants, Macromolecules 39(2006) 4298-4305.

    20. [20]

      [20] Q. Peng, J. Xu, M.J. Li, W.X. Zheng, Blue emitting polyfluorenes containing dendronized carbazole and oxadiazole pendants:synthesis, optical properties, and electroluminescent properties, Macromolecules 42(2009) 5478-5485.

    21. [21]

      [21] X.D. Wang, S.M. Wang, Z.H. Ma, J.Q. Ding, Solution-processible 2,2'-dimethylbiphenyl cored carbazole dendrimers as universal hosts for efficient blue, green, and red phosphorescent OLEDs, Adv. Funct. Mater. 24(2014) 3413-3421.

    22. [22]

      [22] M.K. Kim, J. Kwon, T.H. Kwon, J.(Ⅰ). Hong, A bipolar host containing 1,2,3-triazole for realizing highly efficient phosphorescent organic light-emitting diodes, New J. Chem. 34(2010) 1317-1322.

    23. [23]

      [23] J. Yang, T.L. Ye, Q. Zhang, D.G. Ma, "Click" synthesis of a bipolar dendrimer as a host material for electrophosphorescent devices, Macromol. Chem. Phys. 211(2010) 1969-1976.

    24. [24]

      [24] L.J. Deng, J.Y. Li, W. Li, Solution-processible small-molecular host materials for high-performance phosphorescent organic light-emitting diodes, Dyes Pigments 102(2014) 150-158.

    25. [25]

      [25] R.J. Wang, L.J. Deng, M. Fu, J.L. Cheng, J.Y. Li, Novel Zn complexes of 2-(2-hydroxyphenyl) benzothiazoles ligands:electroluminescence and application as host materials for phosphorescent organic light-emitting diodes, J. Mater. Chem. 22(2012) 23454-23460.

    26. [26]

      [26] Y.T. Tao, Q. Wang, C.L. Yang, et al., Solution-processable highly efficient yellowand red-emitting phosphorescent organic light emitting devices from a small molecule bipolar host and iridium complexes, J. Mater. Chem. 18(2008) 4091-4096.

    27. [27]

      [27] H.Q. Zhang, S.M. Wang, Y.Q. Li, et al., Synthesis, characterization, and electroluminescent properties of star shaped donor-acceptor dendrimers with carbazole dendrons as peripheral branches and heterotriangulene as central core, Tetrahedron 65(2009) 4455-4463.

    28. [28]

      [28] J.B. Yuan, Z.G. Zhang, L.M. Leung, K.L. Zhang, Synthesis and characterization of novel star-shaped pyridine cored compounds with alternating carbazole and triphenylamine moieties, Chin. Chem. Lett. 19(2008) 647-650.

    29. [29]

      [29] K. Albrecht, K. Yamamoto, Dendritic structure having apotential gradient:new synthesis and properties of carbazole dendrimers, J. Am. Chem. Soc. 131(2009) 2244-2251.

    30. [30]

      [30] N. Koch, A. Elschner, J.P. Rabe, R.L. Johnson, Work function independent holeinjection barriers between pentacene and conducting polymers, Adv. Mater. 17(2005) 330-335.

    31. [31]

      [31] H.M. Lee, S.J. Baek, S.C. Gong, et al., Preparation and characterization of phosphorescence organic light-emitting diodes using poly-vinylcarbazole:tris (2-phenylpyridine) iridium (Ⅲ) emission layer, Opt. Eng. 48(2009) 104001.

  • 加载中
    1. [1]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    2. [2]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    3. [3]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    4. [4]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    5. [5]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    6. [6]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    7. [7]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2023.100335

    8. [8]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    9. [9]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    10. [10]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    11. [11]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    12. [12]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    13. [13]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    14. [14]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    15. [15]

      Gaojie ZhuZhen YangShijun LiWeihua ZhuRui CaoJunlong ZhangJianzhang ZhaoJonathan L. SesslerXunjin ZhuJianxin SongYongshu XieJianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535

    16. [16]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    17. [17]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    18. [18]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    19. [19]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    20. [20]

      Yongkang YueZhou XuKaiqing MaFangjun HuoXuemei QinKuanshou ZhangCaixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223

Metrics
  • PDF Downloads(0)
  • Abstract views(556)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return