Citation: Hu Wang, Xiao-Xiong Liu, Juan Xie, Ming Duan, Jun-Lei Tang. CO sensing properties of a cubic ZnSn(OH)6 synthesized by hydrothermal method[J]. Chinese Chemical Letters, ;2016, 27(03): 464-466. doi: 10.1016/j.cclet.2015.12.027 shu

CO sensing properties of a cubic ZnSn(OH)6 synthesized by hydrothermal method

  • Corresponding author: Juan Xie, 
  • Received Date: 30 July 2015
    Available Online: 7 December 2015

    Fund Project: This workwas financially supportedby theKey Project of Sichuan provincial Education office (No.13ZA0183) (No.13ZA0183) Foundation of Youth Science and Technology Innovation Team of Sichuan Province (No.2015TD0007) (No.2014JY0059)

  • In this work, ZnSn(OH)6 with a cubic structure is successfully synthesized by one-step hydrothermal method without any catalyst. The response and recovery characteristics of gas sensing were investigated against various gases via quartz crystal microbalance (QCM) at room temperature. The sensor exhibited high sensitivity and good selectivity toward CO gas. Moreover, a linear dependence of log(-Delta F) about CO concentration was obtained. It is demonstrated that the QCM sensor coated cubic ZnSn(OH)6 could be a suitable candidate for detecting CO.
  • 加载中
    1. [1]

      [1] D.D. Trung, N.D. Hoy, P.V. Tong, et al., Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance, J. Hazard. Mater. 265(2014) 124-132.

    2. [2]

      [2] C. Özbek, S. Okurb, Ö. Mermer, et al., Effect of Fe doping on the CO gas sensing of functional calixarene molecules measured with quartz crystal microbalance technique, Sens. Actuators B 215(2015) 464-470.

    3. [3]

      [3] B.R. Sathe, M.S. Risbud, S. Patil, et al., Highly sensitive nanostructured platinum electrocatalysts for CO oxidation:implications for CO sensing and fuel cell performance, Sens. Actuators A 138(2007) 376-383.

    4. [4]

      [4] S. Vetter, S. Haffer, T. Wagner, M. Tiemann, Nanostructured Co3O4 as a CO gas sensor:temperature-dependent behavior, Sens. Actuators B 206(2015) 133-138.

    5. [5]

      [5] M. Hjiri, L. El Mir, S.G. Leonardi, et al., Al-doped ZnO for highly sensitive CO gas sensors, Sens. Actuators B 196(2014) 413-420.

    6. [6]

      [6] T. Yanagimoto, Y.T. Yu, K. Kaneko, Microstructure and CO gas sensing property of Au/SnO2 core-shell structure nanoparticles synthesized by precipitation method and microwave-assisted hydrothermal synthesis method, Sens. Actuators B 166-167(2012) 31-35.

    7. [7]

      [7] C.Y. Chen, X.Z. Zheng, J. Yang, M.D. Wei, The ZnSn(OH)6 nanocube-graphene composites as an anode material for Li-ion batteries, Phys. Chem. Chem. Phys. 16(2014) 20073-20078.

    8. [8]

      [8] W.H. Feng, Z.X. Pei, Z.B. Fang, et al., A novel high-photoactivity quaternary ZnSn(OH)6-graphene composite evolved from a 3D multilayer structure via a facile and green proton-mediated self-assembly method, J. Mater. Chem. A 2(2014) 7802-7811.

    9. [9]

      [9] L.X. Han, J. Liu, Z.Q. Wang, et al., Shape-controlled synthesis of ZnSn(OH)6 crystallites and their HCHO-sensing properties, CrystEngCommun 14(2012) 3380-3386.

    10. [10]

      [10] G. Sauerbrey, Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung, Z. Phys. 155(1959) 206-222.

    11. [11]

      [11] J. Xie, H. Wang, M. Duan, QCM chemical sensor based on ZnO colloid spheres for the alcohols, Sens. Actuators B 203(2014) 239-244.

    12. [12]

      [12] X.L. Fu, D.W. Huang, Y. Qin, et al., Effects of preparation method on the microstructure and photocatalytic performance of ZnSn(OH)6, Appl. Catal. B 148-149(2014) 532-542.

    13. [13]

      [13] A.K. Ladavos, A.P. Katsoulidis, A. (Ⅰ)osifidis, K.S. Triantafyllidis, T.J. Pinnavaia, P.J. Pomonis, The BET equation, the inflection points of N2 adsorption isotherms and the estimation of specific surface area of porous solids, Micropor. Mesopor. Mater. 151(2012) 126-133.

    14. [14]

      [14] V.P.J. Chung, M.C. Yip, W. Fang, Resorcinol-formaldehyde aerogels for CMOSMEMS capacitive humidity sensor, Sens. Actuators B 214(2015) 181-188.

    15. [15]

      [15] S.H. Wang, C.Y. Shen, H.M. Huang, Y.C. Shih, Rayleigh surface acoustic wave sensor for ppb-level nitric oxide gas sensing, Sens. Actuators A 216(2014) 237-242.

    16. [16]

      [16] X.M. Zhou, W.Y. Fu, H.B. Yang, et al., Novel SnO2 hierarchical nanostructures:synthesis and their gas sensing properties, Mater. Lett. 90(2013) 53-55.

    17. [17]

      [17] T. Sathitwitayakul, M.V. Kuznetsov, (Ⅰ).P. Parkin, R. Binions, The gas sensing properties of some complex metal oxides prepared by self-propagating hightemperature synthesis, Mater. Lett. 75(2012) 36-38.

    18. [18]

      [18] W. Zheng, Z.Y. Li, H.N. Zhang, et al., Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties, Mater. Res. Bull. 44(2009) 1432-1436.

    19. [19]

      [19] J.Z. Ou, W.Y. Ge, B. Carey, et al., Physisorption-based charge transfer in twodimensional SnS2 for selective and reversible NO2 gas sensing, ACS Nano 9(2015) 10313-10323.

  • 加载中
    1. [1]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    2. [2]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    5. [5]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    8. [8]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    9. [9]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    10. [10]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    11. [11]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    12. [12]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    13. [13]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    14. [14]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    15. [15]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    16. [16]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    17. [17]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    18. [18]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    19. [19]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    20. [20]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

Metrics
  • PDF Downloads(0)
  • Abstract views(497)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return