Citation: Qi Yang, Tao Sun, Jia-Yu Yu, Jin-Xin Ma. Electrospinning of GeO2-C fibers and electrochemical application in lithium-ion batteries[J]. Chinese Chemical Letters, ;2016, 27(03): 412-416. doi: 10.1016/j.cclet.2015.12.025 shu

Electrospinning of GeO2-C fibers and electrochemical application in lithium-ion batteries

  • Corresponding author: Qi Yang, 
  • Received Date: 11 September 2015
    Available Online: 7 November 2015

    Fund Project:

  • GeO2-C fibers were successfully synthesized using electrospinning homogeneous sol and subsequent calcination in an inert atmosphere. The spinnable sol was prepared by adding polyacrylonitrile (PAN) and polyvinylpyrrolidone (PVP) in a weight ratio of 1:1 into a mixture with white precipitate produced by dropping GeCl4 into DMF. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to characterize the as-obtained fibers, and electrochemical tests were conducted to measure electrochemical performance of the electrode. The electrospun fibers have uniform diameters of 300 nm. After being calcined at 600℃ for 2 h in Ar, they transform to amorphous GeO2-C fibers with the same morphologies. The GeO2-C fibers exhibit excellent cycling stability with a high reversible capacity of 838.93 mA h g-1 after 100 cycles at a current density of 50 mA g-1, indicating the composite fibers could be promising anode candidates for lithium-ion batteries.
  • 加载中
    1. [1]

      [1] L. Li, K.H. Seng, C.Q. Feng, H.K. Liu, Z.P. Guo, Synthesis of hollow GeO2 nanostructures, transformation into Ge@C, and lithium storage properties, J. Mater. Chem. A 1(2013) 7666-7672.

    2. [2]

      [2] K.H. Seng, M.H. Park, Z.P. Guo, H.K. Liu, J. Cho, Catalytic role of Ge in highly reversible GeO2/Ge/C nanocomposite anode material for lithium batteries, Nano Lett. 13(2013) 1230-1236.

    3. [3]

      [3] Y.M. Lin, K.C. Klavetter, A. Heller, C. Buddie Mullins, Storage of lithium in hydrothermally synthesized GeO2 nanoparticles, J. Phys. Chem. Lett. 4(2013) 999-1004.

    4. [4]

      [4] J.K. Feng, M.O. Lai, L. Lu, (Ⅰ)nfluence of grain size on lithium storage performance of germanium oxide films, Electrochim. Acta 62(2012) 103-108.

    5. [5]

      [5] X. Gu, L. Chen, Z.C. Ju, et al., Controlled growth of porous α-Fe2O3 branches on β-MnO2 nanorods for excellent performance in lithium-ion batteries, Adv. Funct. Mater. 23(2013) 4049-4056.

    6. [6]

      [6] J.Y. Xiang, J.P. Tu, Y.F. Yuan, et al., Electrochemical investigation on nanoflowerlike CuO/Ni composite film as anode for lithium ion batteries, Electrochim. Acta 54(2009) 1160-1165.

    7. [7]

      [7] T.J. Athauda, J.G. Neff, L. Sutherlin, U. Butt, R.R. Ozer, Systematic study of the structure-property relationships of branched hierarchical TiO2/ZnO nanostructures, ACS Appl. Mater. (Ⅰ)nterfaces 4(2012) 6917-6926.

    8. [8]

      [8] M.X. Ma, Mesoporous cobalt oxide for largely improved lithium storage properties, Chin. Chem. Lett. 23(2012) 949-952.

    9. [9]

      [9] S.L. Yang, B.H. Zhou, M. Lei, et al., Sub-100 nm hollow SnO2@C nanoparticles as anode material for lithium ion batteries and significantly enhanced cycle performances, Chin. Chem. Lett. 26(2015) 1293-1297.

    10. [10]

      [10] Y. Wang, J.Y. Lee, H.C. Zeng, Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application, Chem. Mater. 17(2005) 3899-3903.

    11. [11]

      [11] Z.X. Yang, G.D. Du, C.Q. Feng, et al., Synthesis of uniform polycrystalline tin dioxide nanofibers and electrochemical application in lithium-ion batteries, Electrochim. Acta 55(2010) 5485-5491.

    12. [12]

      [12] L. Qiao, X.H. Wang, L. Qiao, et al., Single electrospun porous NiO-ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries, Nanoscale 5(2013) 3037-3042.

    13. [13]

      [13] H.R. Jung, W.J. Lee, Electrochemical characterization of electrospun SnOx-embedded carbon nanofibers anode for lithium ion battery with EXAFS analysis, J. Electroanal. Chem. 662(2011) 334-342.

    14. [14]

      [14] D. Kim, D. Lee, J. Kim, J. Moon, Electrospun Ni-added SnO2-carbon nanofiber composite anode for high-performance lithium-ion batteries, ACS Appl. Mater. (Ⅰ)nterfaces 4(2012) 5408-5415.

    15. [15]

      [15] Z.X. Yang, G.D. Du, Z.P. Guo, et al., Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties, J. Mater. Res. 25(2010) 1516-1524.

    16. [16]

      [16] hhttp://www.lasurface.com/database/elementxps.phpi

    17. [17]

      [17] N.R. Murphy, J.T. Grant, L. Sun, et al., Correlation between optical properties and chemical composition of sputter-deposited germanium oxide (GeOx) films, Opt. Mater. 36(2014) 1177-1182.

    18. [18]

      [18] B. Wang, J.L. Cheng, Y.P. Wu, D. Wang, D.N. He, Electrochemical performance of carbon/Ni composite fibers from electrospinning as anode material for lithium ion batteries, J. Mater. Chem. A 1(2013) 1368-1373.

    19. [19]

      [19] J. Jin, Z.Q. Shi, C.Y. Wang, The structure and electrochemical properties of carbonized polyacrylonitrile microspheres, Solid State (Ⅰ)onics 261(2014) 5-10.

  • 加载中
    1. [1]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    2. [2]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    3. [3]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    4. [4]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    5. [5]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    6. [6]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    7. [7]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    8. [8]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    9. [9]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    10. [10]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    11. [11]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    12. [12]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    13. [13]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    14. [14]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    15. [15]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    16. [16]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    17. [17]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    18. [18]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    19. [19]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

    20. [20]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

Metrics
  • PDF Downloads(0)
  • Abstract views(498)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return