Citation: Yan Li, Ming-Guang Li, Ya-Jun Su, Jian-Gang Liu, Yan-Chun Han, Shi-Jun Zheng, Li-Xiang Wang. Liquid crystal character controlled by complementary discotic molecules mixtures:Columnar stacking type and mesophase temperature range[J]. Chinese Chemical Letters, ;2016, 27(03): 475-480. doi: 10.1016/j.cclet.2015.12.024 shu

Liquid crystal character controlled by complementary discotic molecules mixtures:Columnar stacking type and mesophase temperature range

  • Corresponding author: Yan-Chun Han, 
  • Received Date: 12 August 2015
    Available Online: 30 September 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (No.51303177) (No.51303177)the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB12020300). (No.XDB12020300)

  • In this work, the mesophase properties were tuned via mixing two discotic molecules with structural complementarity. Compared with the liquid crystalline hexakis(n-hexyloxy)triphenylene (H6TP) materials (columnar hexagonal phase from 53℃ to 91℃), mesophase types as well as phase transition temperatures varied with the introduction of crystalline hexaazatriphenylene derivative (PBH) molecules. The introduction of less than 33% amount of PBH disrupted the columnar hexagonal phase formed by H6TP remarkably, followed by the decreased clearing temperatures of liquid crystals. As the PBH amount was further increased, the destroyed columnar hexagonal phase was turned into the columnar rectangular phase, in which H6TP and PBH molecules together formed the columnar mesophase. The formation of newmesophase contributed to the enlarged mesophase temperature (from 44℃ to 144℃). We speculated that the alkyl chains interaction induced by the PBH component competed with the strong π-π stacking between H6TP molecules, thus altering the liquid crystalline properties including mesophase types and phase transition temperatures.
  • 加载中
    1. [1]

      [1] B.R. Kaafarani, Discotic liquid crystals for opto-electronic applications, Chem. Mater. 23(2011) 378-396.

    2. [2]

      [2] S. Sergeyev, W. Pisula, Y.H. Geerts, Discotic liquid crystals:a new generation of organic semiconductors, Chem. Soc. Rev. 36(2007) 1902-1929.

    3. [3]

      [3] S.S. Chen, T. Li, D.H. Zhao, Progress in discotic liquid crystalline materials, Acta Phys. Chim. Sin. 26(2010) 1124-1134.

    4. [4]

      [4] S. Laschat, A. Baro, N. Steinke, et al., Discotic liquid crystals:from tailor-made synthesis to plastic electronics, Angew. Chem. (Ⅰ)nt. Ed. Engl. 46(2007) 4832-4887.

    5. [5]

      [5] R.J. Bushby, K. Kawata, Liquid crystals that affected the world:discotic liquid crystals, Liq. Cryst. 38(2011) 1415-1426.

    6. [6]

      [6] S. Kumar, Playing with discs, Liq. Cryst. 36(2009) 607-638.

    7. [7]

      [7] M.Q. Li, Y. Li, J.Q. Liu, L.X. Wang, Y.C. Han, Morphological transformation of pyrazine-based acene-type molecules after blending with semiconducting polymers:from fibers to quadrilateral crystals, Soft Matter 9(2013) 5634-5641.

    8. [8]

      [8] E.K. Fleischmann, R. Zentel, Liquid-crystalline ordering as a concept in materials science:from semiconductors to stimuli-responsive devices, Angew. Chem. (Ⅰ)nt. Ed. Engl. 52(2013) 8810-8827.

    9. [9]

      [9] W. Pisula, M. Zorn, J.Y. Chang, K. Müllen, R. Zentel, Liquid crystalline ordering and charge transport in semiconducting materials, Macromol. Rapid Commun. 30(2009) 1179-1202.

    10. [10]

      [10] M. Funahashi, Nanostructured liquid-crystalline semiconductors-a new approach to soft matter electronics, J. Mater. Chem. C 2(2014) 7451-7459.

    11. [11]

      [11] H. (Ⅰ)ino, Y. Takayashiki, J.(Ⅰ). Hanna, R.J. Bushby, D. Haarer, High electron mobility of 0.1 cm2V-1s-1 in the highly ordered columnar phase of hexahexylthiotriphenylene, Appl. Phys. Lett. 87(2005) 192105.

    12. [12]

      [12] G. Schweicher, G. Gbabode, F. Quist, O. Debever, N. Dumont, S. Sergeyev, Y.H. Geerts, Homeotropic and planar alignment of discotic liquid crystals:the role of the columnar mesophase, Chem. Mater. 21(2009) 5867-5874.

    13. [13]

      [13] T.J. Zhang, D.M. Sun, X.K. Ren, et al., Synthesis and properties of siloxane modified perylene bisimide discotic liquid crystals, Soft Matter 9(2013) 10739-10745.

    14. [14]

      [14] L.A. Haverkate, M. Zbiri, M.R. Johnson, et al., On the morphology of a discotic liquid crystalline charge transfer complex, J. Phys. Chem. B 116(2012) 13098-13105.

    15. [15]

      [15] O. Kruglova, E. Mendes, Z. Yildirim, et al., Structure and dynamics of a discotic liquid-crystalline charge-transfer complex, ChemPhysChem 8(2007) 1338-1344.

    16. [16]

      [16] T. Kreouzis, K. Scott, K.J. Donovan, et al., Enhanced electronic transport properties in complementary binary discotic liquid crystal systems, Chem. Phys. 262(2000) 489-497.

    17. [17]

      [17] E.O. Arikainen, N. Boden, R.J. Bushby, et al., Complimentary polytopic interactions, Angew. Chem. (Ⅰ)nt. Ed. Engl. 39(2000) 2333-2336.

    18. [18]

      [18] N. Boden, R.J. Bushby, Z.B. Lu, O.R. Lozman, CP(Ⅰ) induction of liquid crystal behaviour in triphenylenes with a mixture of hydrophobic and hydrophilic side chains, Liq. Cryst. 28(2001) 657-661.

    19. [19]

      [19] N. Boden, R. Bushby, O. Lozman, A comparison of CP(Ⅰ) and charge-transfer twocomponent columnar phases, Mol. Cryst. Liq. Cryst. 411(2004) 345-354.

    20. [20]

      [20] R.J. Bushby, J. Fisher, O.R. Lozman, et al., The stability of columns comprising alternating triphenylene and hexaphenyltriphenylene molecules:variations in the structure of the hexaphenyltriphenylene component, Liq. Cryst. 33(2006) 653-664.

    21. [21]

      [21] W. Pisula, M. Kastler, D. Wasserfallen, et al., Pronounced supramolecular order in discotic donor-acceptor mixtures, Angew. Chem. (Ⅰ)nt. Ed. Engl. 45(2006) 819-823.

    22. [22]

      [22] A. Das, S. Ghosh, Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores, Angew. Chem. (Ⅰ)nt. Ed. Engl. 53(2014) 2038-2054.

    23. [23]

      [23] M. Kumar, K. Venkata Rao, S.J. George, Supramolecular charge transfer nanostructures, Phys. Chem. Chem. Phys. 16(2014) 1300-1313.

    24. [24]

      [24] P.S. Kumar, S. Kumar, V. Lakshminarayanan, Electrical conductivity studies on discotic liquid crystal-ferrocenium donor-acceptor systems, J. Phys. Chem. B 112(2008) 4865-4869.

    25. [25]

      [25] K.R. Leight, B.E. Esarey, A.E. Murray, J.J. Reczek, Predictable tuning of absorption properties in modular aromatic donor-acceptor liquid crystals, Chem. Mater. 24(2012) 3318-3328.

    26. [26]

      [26] J.J. Reczek, K.R. Villazor, V. Lynch, T.M. Swager, B.L. (Ⅰ)verson, Tunable columnar mesophases utilizing C2 symmetric aromatic donor-acceptor complexes, J. Am. Chem. Soc. 128(2006) 7995-8002.

    27. [27]

      [27] M. Wang, Y. Li, H. Tong, et al., Hexaazatriphenylene derivatives with tunable lowest unoccupied molecular orbital levels, Org. Lett. 13(2011) 4378-4381.

    28. [28]

      [28] P.J. Stackhouse, M. Hird, (Ⅰ)nfluence of branched chains on the mesomorphic properties of symmetrical and unsymmetrical triphenylene discotic liquid crystals, Liq. Cryst. 35(2008) 597-607.

    29. [29]

      [29] M. Lehmann, G. Kestemont, R. Gómez Aspe, et al., High charge-carrier mobility in pi-deficient discotic mesogens:design and structure-property relationship, Chemistry 11(2005) 3349-3362.

    30. [30]

      [30] X. Wang, Y. Zhou, T. Lei, et al., Structural-property relationship in pyrazino[2,3-g] quinoxaline derivatives:morphology, photophysical, and waveguide properties, Chem. Mater. 22(2010) 3735-3745.

  • 加载中
    1. [1]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    2. [2]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    3. [3]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    4. [4]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    5. [5]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    6. [6]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    7. [7]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    8. [8]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    9. [9]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    10. [10]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    11. [11]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    12. [12]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    13. [13]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    14. [14]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    15. [15]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    16. [16]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    17. [17]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    18. [18]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    19. [19]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    20. [20]

      Shu LinKezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431

Metrics
  • PDF Downloads(0)
  • Abstract views(520)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return