Citation: Yan Li, Ming-Guang Li, Ya-Jun Su, Jian-Gang Liu, Yan-Chun Han, Shi-Jun Zheng, Li-Xiang Wang. Liquid crystal character controlled by complementary discotic molecules mixtures:Columnar stacking type and mesophase temperature range[J]. Chinese Chemical Letters, ;2016, 27(03): 475-480. doi: 10.1016/j.cclet.2015.12.024 shu

Liquid crystal character controlled by complementary discotic molecules mixtures:Columnar stacking type and mesophase temperature range

  • Corresponding author: Yan-Chun Han, 
  • Received Date: 12 August 2015
    Available Online: 30 September 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (No.51303177) (No.51303177)the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB12020300). (No.XDB12020300)

  • In this work, the mesophase properties were tuned via mixing two discotic molecules with structural complementarity. Compared with the liquid crystalline hexakis(n-hexyloxy)triphenylene (H6TP) materials (columnar hexagonal phase from 53℃ to 91℃), mesophase types as well as phase transition temperatures varied with the introduction of crystalline hexaazatriphenylene derivative (PBH) molecules. The introduction of less than 33% amount of PBH disrupted the columnar hexagonal phase formed by H6TP remarkably, followed by the decreased clearing temperatures of liquid crystals. As the PBH amount was further increased, the destroyed columnar hexagonal phase was turned into the columnar rectangular phase, in which H6TP and PBH molecules together formed the columnar mesophase. The formation of newmesophase contributed to the enlarged mesophase temperature (from 44℃ to 144℃). We speculated that the alkyl chains interaction induced by the PBH component competed with the strong π-π stacking between H6TP molecules, thus altering the liquid crystalline properties including mesophase types and phase transition temperatures.
  • 加载中
    1. [1]

      [1] B.R. Kaafarani, Discotic liquid crystals for opto-electronic applications, Chem. Mater. 23(2011) 378-396.

    2. [2]

      [2] S. Sergeyev, W. Pisula, Y.H. Geerts, Discotic liquid crystals:a new generation of organic semiconductors, Chem. Soc. Rev. 36(2007) 1902-1929.

    3. [3]

      [3] S.S. Chen, T. Li, D.H. Zhao, Progress in discotic liquid crystalline materials, Acta Phys. Chim. Sin. 26(2010) 1124-1134.

    4. [4]

      [4] S. Laschat, A. Baro, N. Steinke, et al., Discotic liquid crystals:from tailor-made synthesis to plastic electronics, Angew. Chem. (Ⅰ)nt. Ed. Engl. 46(2007) 4832-4887.

    5. [5]

      [5] R.J. Bushby, K. Kawata, Liquid crystals that affected the world:discotic liquid crystals, Liq. Cryst. 38(2011) 1415-1426.

    6. [6]

      [6] S. Kumar, Playing with discs, Liq. Cryst. 36(2009) 607-638.

    7. [7]

      [7] M.Q. Li, Y. Li, J.Q. Liu, L.X. Wang, Y.C. Han, Morphological transformation of pyrazine-based acene-type molecules after blending with semiconducting polymers:from fibers to quadrilateral crystals, Soft Matter 9(2013) 5634-5641.

    8. [8]

      [8] E.K. Fleischmann, R. Zentel, Liquid-crystalline ordering as a concept in materials science:from semiconductors to stimuli-responsive devices, Angew. Chem. (Ⅰ)nt. Ed. Engl. 52(2013) 8810-8827.

    9. [9]

      [9] W. Pisula, M. Zorn, J.Y. Chang, K. Müllen, R. Zentel, Liquid crystalline ordering and charge transport in semiconducting materials, Macromol. Rapid Commun. 30(2009) 1179-1202.

    10. [10]

      [10] M. Funahashi, Nanostructured liquid-crystalline semiconductors-a new approach to soft matter electronics, J. Mater. Chem. C 2(2014) 7451-7459.

    11. [11]

      [11] H. (Ⅰ)ino, Y. Takayashiki, J.(Ⅰ). Hanna, R.J. Bushby, D. Haarer, High electron mobility of 0.1 cm2V-1s-1 in the highly ordered columnar phase of hexahexylthiotriphenylene, Appl. Phys. Lett. 87(2005) 192105.

    12. [12]

      [12] G. Schweicher, G. Gbabode, F. Quist, O. Debever, N. Dumont, S. Sergeyev, Y.H. Geerts, Homeotropic and planar alignment of discotic liquid crystals:the role of the columnar mesophase, Chem. Mater. 21(2009) 5867-5874.

    13. [13]

      [13] T.J. Zhang, D.M. Sun, X.K. Ren, et al., Synthesis and properties of siloxane modified perylene bisimide discotic liquid crystals, Soft Matter 9(2013) 10739-10745.

    14. [14]

      [14] L.A. Haverkate, M. Zbiri, M.R. Johnson, et al., On the morphology of a discotic liquid crystalline charge transfer complex, J. Phys. Chem. B 116(2012) 13098-13105.

    15. [15]

      [15] O. Kruglova, E. Mendes, Z. Yildirim, et al., Structure and dynamics of a discotic liquid-crystalline charge-transfer complex, ChemPhysChem 8(2007) 1338-1344.

    16. [16]

      [16] T. Kreouzis, K. Scott, K.J. Donovan, et al., Enhanced electronic transport properties in complementary binary discotic liquid crystal systems, Chem. Phys. 262(2000) 489-497.

    17. [17]

      [17] E.O. Arikainen, N. Boden, R.J. Bushby, et al., Complimentary polytopic interactions, Angew. Chem. (Ⅰ)nt. Ed. Engl. 39(2000) 2333-2336.

    18. [18]

      [18] N. Boden, R.J. Bushby, Z.B. Lu, O.R. Lozman, CP(Ⅰ) induction of liquid crystal behaviour in triphenylenes with a mixture of hydrophobic and hydrophilic side chains, Liq. Cryst. 28(2001) 657-661.

    19. [19]

      [19] N. Boden, R. Bushby, O. Lozman, A comparison of CP(Ⅰ) and charge-transfer twocomponent columnar phases, Mol. Cryst. Liq. Cryst. 411(2004) 345-354.

    20. [20]

      [20] R.J. Bushby, J. Fisher, O.R. Lozman, et al., The stability of columns comprising alternating triphenylene and hexaphenyltriphenylene molecules:variations in the structure of the hexaphenyltriphenylene component, Liq. Cryst. 33(2006) 653-664.

    21. [21]

      [21] W. Pisula, M. Kastler, D. Wasserfallen, et al., Pronounced supramolecular order in discotic donor-acceptor mixtures, Angew. Chem. (Ⅰ)nt. Ed. Engl. 45(2006) 819-823.

    22. [22]

      [22] A. Das, S. Ghosh, Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores, Angew. Chem. (Ⅰ)nt. Ed. Engl. 53(2014) 2038-2054.

    23. [23]

      [23] M. Kumar, K. Venkata Rao, S.J. George, Supramolecular charge transfer nanostructures, Phys. Chem. Chem. Phys. 16(2014) 1300-1313.

    24. [24]

      [24] P.S. Kumar, S. Kumar, V. Lakshminarayanan, Electrical conductivity studies on discotic liquid crystal-ferrocenium donor-acceptor systems, J. Phys. Chem. B 112(2008) 4865-4869.

    25. [25]

      [25] K.R. Leight, B.E. Esarey, A.E. Murray, J.J. Reczek, Predictable tuning of absorption properties in modular aromatic donor-acceptor liquid crystals, Chem. Mater. 24(2012) 3318-3328.

    26. [26]

      [26] J.J. Reczek, K.R. Villazor, V. Lynch, T.M. Swager, B.L. (Ⅰ)verson, Tunable columnar mesophases utilizing C2 symmetric aromatic donor-acceptor complexes, J. Am. Chem. Soc. 128(2006) 7995-8002.

    27. [27]

      [27] M. Wang, Y. Li, H. Tong, et al., Hexaazatriphenylene derivatives with tunable lowest unoccupied molecular orbital levels, Org. Lett. 13(2011) 4378-4381.

    28. [28]

      [28] P.J. Stackhouse, M. Hird, (Ⅰ)nfluence of branched chains on the mesomorphic properties of symmetrical and unsymmetrical triphenylene discotic liquid crystals, Liq. Cryst. 35(2008) 597-607.

    29. [29]

      [29] M. Lehmann, G. Kestemont, R. Gómez Aspe, et al., High charge-carrier mobility in pi-deficient discotic mesogens:design and structure-property relationship, Chemistry 11(2005) 3349-3362.

    30. [30]

      [30] X. Wang, Y. Zhou, T. Lei, et al., Structural-property relationship in pyrazino[2,3-g] quinoxaline derivatives:morphology, photophysical, and waveguide properties, Chem. Mater. 22(2010) 3735-3745.

  • 加载中
    1. [1]

      Yan Cheng Hai-Quan Yao Ya-Di Zhang Chao Shi Heng-Yun Ye Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358

    2. [2]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    3. [3]

      Shifang SongChenyu WuLi ZhangDezhi YangYang LuZhengzheng Zhou . Unpacking phase transitions in multi-component drug systems: A case study. Chinese Chemical Letters, 2025, 36(7): 110911-. doi: 10.1016/j.cclet.2025.110911

    4. [4]

      Tong ZhangXiaojing LiangLicheng WangShuai WangXiaoxiao LiuYong Guo . An ionic liquid assisted hydrogel functionalized silica stationary phase for mixed-mode liquid chromatography. Chinese Chemical Letters, 2025, 36(1): 109889-. doi: 10.1016/j.cclet.2024.109889

    5. [5]

      Wangyan HuKe LiXiangnan DouNing LiXiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806

    6. [6]

      Linfeng LiBao WangTiantong ZhangXinyuan WangDingqiang FengWei LiJiangjiexing WuJinli Zhang . Identifying the catalytic active site of durable Ru-based liquid-phase catalyst for acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(10): 111303-. doi: 10.1016/j.cclet.2025.111303

    7. [7]

      Jia-Xin Wu Zheng Yin Ming-Hua Zeng . Multi-phase evolution of MOFs involving crystal, liquid and glass: new dynamic chemistry. Chinese Journal of Structural Chemistry, 2025, 44(10): 100710-100710. doi: 10.1016/j.cjsc.2025.100710

    8. [8]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    9. [9]

      Yuwei KangCan YangJun ZhangQi Wu . Synergistic triple-site engineering in ABX3-type hybrid halides for high-performance nonlinear optical crystals. Chinese Chemical Letters, 2026, 37(1): 111385-. doi: 10.1016/j.cclet.2025.111385

    10. [10]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    11. [11]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    12. [12]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    13. [13]

      Zhilei ZhangYanan SunXiaosong ShiXiaozhe YinDawei LiuErjing WangJie LiuYuanyuan HuLang Jiang . Molecular tailoring towards two-dimensional organic crystals at the thickness limit. Chinese Chemical Letters, 2025, 36(9): 110786-. doi: 10.1016/j.cclet.2024.110786

    14. [14]

      Matvey K. Shurikov Yuliana A. Kolesnikova Darya E. Votkina Pavel A. Abramov Taisiya S. Sukhikh Galina V. Romanenko Sergey L. Veber Dmitry E. Gorbunov Nina P. Gritsan Giuseppe Resnati Evgeny V. Tretyakov Vadim Yu. Kukushkin Pavel S. Postnikov Pavel V. Petunin . Engineering optical anisotropy in paramagnetic organic crystals: Dichroism of nitronyl nitroxide radicals. Chinese Journal of Structural Chemistry, 2025, 44(9): 100653-100653. doi: 10.1016/j.cjsc.2025.100653

    15. [15]

      Yan-Ran WengWen-Fu TianWen-Jing DingBi-He RenDe-Hou LiuJia-Ying TangFeng ZhouXiao-Gang ChenXian-Jiang SongHui-Peng LvYong Ai . Homochiral organic ferroelastics with plastic phase transition. Chinese Chemical Letters, 2025, 36(7): 110188-. doi: 10.1016/j.cclet.2024.110188

    16. [16]

      Ruixiang FangYilan ZhaiHuijuan BiCaixuan WangAiling TangShiming ZhangZhixiang WeiKun Lu . Enhancing photovoltaic performance via γ-positioned side-chains engineering of Y-series non-fullerene acceptors. Chinese Chemical Letters, 2026, 37(1): 111787-. doi: 10.1016/j.cclet.2025.111787

    17. [17]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    18. [18]

      Fenglin JiangAnan LiuQian WeiYoucai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504

    19. [19]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    20. [20]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

Metrics
  • PDF Downloads(0)
  • Abstract views(1230)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return