Citation: Xu Ming-Kun, Ouyang Zhen-Hua, Shen Zhu-Rui. Topological evolution of cerium (Ⅲ) molybdate microflake assemblies induced by amino acids[J]. Chinese Chemical Letters, ;2016, 27(5): 673-677. doi: 10.1016/j.cclet.2015.12.023 shu

Topological evolution of cerium (Ⅲ) molybdate microflake assemblies induced by amino acids

  • Corresponding author: Shen Zhu-Rui, shenzhurui@tju.edu.cn
  • Received Date: 21 October 2015
    Revised Date: 15 December 2015
    Accepted Date: 23 December 2015
    Available Online: 6 May 2016

Figures(4)

  • In this work, cerium(Ⅲ) molybdate microspheres configured as microflakes were synthesized in the presence of lysine via a hydrothermal process. We studied the role of lysine and other amino acids on the morphologic control of cerium(Ⅲ) molybdate crystals. First, with the increase of lysine, thinner microflakes and smaller microspheres are obtained. Moreover, a transformation in topology of cerium(Ⅲ) molybdate assemblies from three-dimensional (3D) into two-dimensional (2D) can be ascribed to controlled nucleation and growth of cerium(Ⅲ) molybdate induced by lysine. Second, amino acids with strong hydrophilic "R" groups tend to induce nucleation and result in spherical assemblies formed by nanoparticles or nanoflakes, while those with weaker hydrophilic "R" groups tend to induce growth and yield spherical assemblies of microflakes.
  • 加载中
    1. [1]

      Berman A., Hanson J., Leiserowitz L.. Biological control of crystal texture:a widespread strategy for adapting crystal properties to function[J]. Science, 1993,259:776-779.

    2. [2]

      Sarikaya M., Tamerler C., Jen A.K.Y.. Molecular biomimetics:nanotechnology through biology[J]. Nat. Mater., 2003,2:577-585.

    3. [3]

      Orme C.A., Noy A., Wierzbicki A.. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps[J]. Nature, 2001,411:775-779.

    4. [4]

      Matsumoto T., Okazaki M., Inoue M.. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid[J]. Biomaterials, 2002,23:2241-2247.

    5. [5]

      Zhang H.G., Zhu Q.S., Wang Y.. Morphologically controlled synthesis of hydroxyapatite with partial substitution of fluorine[J]. Chem. Mater., 2005,17:5824-5830.

    6. [6]

      Tong H., Ma W.T., Wang L.L.. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process[J]. Biomaterials, 2004,25:3923-3929.

    7. [7]

      Lu A.H., Spliethoff B., Schueth F.. Aqueous synthesis of ordered mesoporous carbon via self-assembly catalyzed by amino acid[J]. Chem. Mater., 2008,20:5314-5319.

    8. [8]

      He Z.B., Yu S.H., Zhu J.P.. Amino acids controlled growth of shuttle-like scrolled tellurium nanotubes and nanowires with sharp tips[J]. Chem. Mater., 2005,17:2785-2788.

    9. [9]

      Dhanaraj P.V., Bhagavannarayana G., Rajesh N.P.. Effect of amino acid additives on crystal growth parameters and properties of ammonium dihydrogen orthophosphate crystals[J]. Mater. Chem. Phys., 2008,112:490-495.

    10. [10]

      Lu Q.Y., Gao F., Komarneni S.. Biomolecule-assisted reduction in the synthesis of single-crystalline tellurium nanowires[J]. Adv. Mater., 2004,16:1629-1632.

    11. [11]

      Yokoi T., Wakabayashi J., Otsuka Y.. Mechanism of formation of uniformsized silica nanospheres catalyzed by basic amino acids[J]. Chem. Mater., 2009,21:3719-3729.

    12. [12]

      Kuang W.X., Fan Y.N., Chen K.D.. Partial oxidation of toluene over ultrafine mixed Mo-based oxide particles[J]. J. Catal., 1999,186:310-317.

    13. [13]

      Kuang W.X., Fan Y.N., Liu L.. Study on the reactivity of ultrafine ceriummolybdenum oxide particles in the absence of molecular oxygen[J]. Catal. Lett., 1999,61:173-178.

    14. [14]

      Kuang W.X., Fan Y.N., Chen Y.. Catalytic properties of ultrafinemolybdenum-cerium oxide particles prepared by the sol-gel method[J]. Catal. Lett., 1998,50:31-35.

    15. [15]

      Kuang W.X., Fan Y.I., Yao K.W.. Preparation and characterization of ultrafine rare earth molybdenum complex oxide particles[J]. J. Solid State Chem., 1998,140:354-360.

    16. [16]

      Yousefi T., Khanchi A.R., Ahmadi S.J.. Cerium(Ⅲ) molybdate nanoparticles:synthesis, characterization and radionuclides adsorption studies[J]. J Hazard. Mater., 2012,215:266-271.

    17. [17]

      Zhang N., Bu W., Xu Y.. Self-assembled flowerlike europium-doped lanthanide molybdate microarchitectures and their photoluminescence properties[J]. J. Phys. Chem. C, 2007,111:5014-5019.

    18. [18]

      Wang S.F., Rao K.K., Wang Y.R.. Structural characterization and luminescent properties of a red phosphor series:Y2-xEux(MoO4)3(x=0.4-2.0)[J]. J. Am. Ceram. Soc., 2009,92:1732-1738.

    19. [19]

      Tian Y., Qi X., Wu X.. Luminescent properties of Y2(MoO4)3:Eu3+ red phosphors with flowerlike shape prepared via coprecipitation method[J]. J. Phys. Chem. C, 2009,113:10767-10772.

    20. [20]

      Bharat L.K., Bandi V.R., Yu J.S.. Polyol mediated solvothermal synthesis and characterization of spindle shaped La2(MoO4)3:Eu3+ phosphors[J]. Chem. Eng. J., 2014,255:205-213.

    21. [21]

      Zhang Y., Zheng A., Yang X.. Controlled synthesis, characterization and photoluminescence property of olive-like tetragonal α-Nd2(MoO4)3[J]. Mater Res. Bull., 2012,47:2364-2368.

    22. [22]

      Sumithra S., Umarji A.M.. Negative thermal expansion in rare earth molybdates[J]. Solid State Sci., 2006,8:1453-1458.

    23. [23]

      Romao C.P., Miller K.J., Johnson M.B.. Thermal, vibrational, and thermoelastic properties of Y2Mo3O12 and their relations to negative thermal expansion[J]. Phys. Rev. B:Condens. Matter, 2014,90:024305-0243013.

    24. [24]

      Evans J.S.O., Mary T.A., Sleight A.W.. Negative thermal expansion materials[J]. Phys. B:Condens. Matter, 1997,241-243:311-316.

    25. [25]

      Kartsonakis I.A., Kordas G.. Synthesis and characterization of cerium molybdate nanocontainers and their inhibitor complexes[J]. J. Am. Ceram. Soc., 2010,93:65-73.

    26. [26]

      J.F. Moulder, W.F. Stickle, P.E. Sobol, et al., Chapter Ⅱ:standard ESCA spectra of the elements and line energy information, in:J. Chastain (Ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronic Division, USA, 1992, pp. 78-79.

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    3. [3]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    4. [4]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    5. [5]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    6. [6]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    7. [7]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    8. [8]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    9. [9]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    10. [10]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    11. [11]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    12. [12]

      Shengfei DongZiyu LiuXiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    17. [17]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    18. [18]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    19. [19]

      Min-Hang ZhouJun JiangWei-Min He . EDA-complexes-enabled photochemical synthesis of α-amino acids with imines and tetrabutylammonium oxalate. Chinese Chemical Letters, 2025, 36(1): 110446-. doi: 10.1016/j.cclet.2024.110446

    20. [20]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

Metrics
  • PDF Downloads(0)
  • Abstract views(593)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return