Citation: Xi Lu, Bin Xiao, Rui Shang, Lei Liu. Synthesis of unnatural amino acids through palladium-catalyzed C(sp3)-H functionalization[J]. Chinese Chemical Letters, ;2016, 27(03): 305-311. doi: 10.1016/j.cclet.2015.12.021 shu

Synthesis of unnatural amino acids through palladium-catalyzed C(sp3)-H functionalization

  • Corresponding author: Lei Liu, 
  • Received Date: 16 October 2015
    Available Online: 29 November 2015

  • Unnatural α-amino acids have been extensively used in the modern drug discovery and protein engineering studies. They have also found applications in the development of chiral molecular catalysts and the total synthesis of diverse natural products. Accordingly the development of cost-effective approaches for the preparation of unnatural α-amino acids has received increasing attentions. Among all the available methods for this purpose, direct C-H functionalization of simple amino acids represents one of the most attractive approaches because it exhibits good atom-economy and step-efficiency. In particular, selective functionalization of either the primary or secondary C(sp3)-H bonds in the amino acids has been explored to make versatile C-C, C-N, C-O, C-B and C-F bonds to modify the side chain of amino acids and even peptides. The present review surveys the recent advances of synthesis of chiral unnatural α-amino acids and peptides through palladium-catalyzed functionalization of un-activated C(sp3)-H bonds.
  • 加载中
    1. [1]

      [1] (a) A.B. Hughes, Amino Acids, Peptides and Proteins in Organic Chemistry Analysis and Function of Amino Acids and Peptides, John Wiley & Sons, 2013;

    2. [2]

      (b) Y. Lin, J. Wang, Y. Lu, Functional tuning and expanding of myoglobin by rational protein design, Sci. China Chem. 57(2014) 346-355;

    3. [3]

      (c) Y. Huang, L. Liu, Chemical synthesis of crystalline proteins, Sci. China Chem. 58(2015) 1779-1781.

    4. [4]

      [2] F. Albericio, H.G. Kruger, Therapeutic peptides, Future Med. Chem. 4(2012) 1527-1531.

    5. [5]

      [3] (a) J. Seyden-Penne, Chiral Auxiliaries and Ligands in Asymmetric Synthesis, Wiley-(Ⅰ)nterscience, 1995;

    6. [6]

      (b) M.Y. Liu, S.B. Hong, W. Zhang, W. Deng, Expedient copper-catalyzed borylation reactions using amino acids as ligands, Chin. Chem. Lett. 26(2015) 373-376;

    7. [7]

      (c) J. Kim, M. Sim, N. Kim, S. Hong, Asymmetric C-H functionalization of cyclopropanes using an isoleucine-NH2 bidentate directing group, Chem. Sci. 6(2015) 3611-3616.

    8. [8]

      [4] (a) X. Lu, J. Yi, Z.Q. Zhang, et al., Expedient synthesis of chiral α-amino acids through nickel-catalyzed reductive cross-coupling, Chem. Eur. J. 20(2014) 15339-15343;

    9. [9]

      (b) C.Z. Tao, Z.T. Zhang, J.W. Wu, R.H. Li, Z.L. Cao, Synthesis of unnatural Nglycosyl α-amino acids via Petasis reaction, Chin. Chem. Lett. 25(2014) 532-534;

    10. [10]

      (c) X.B. Wang, X.L. Wang, J. Hu, et al., Study on the synthesis of novel sugar amino acids, Acta Chim. Sin. 73(2015) 699-704;

    11. [11]

      (d) F. Ni, C. Fu, X. Gao, et al., N-phosphoryl amino acid models for P-N bonds in prebiotic chemical evolution, Sci. China Chem. 58(2015) 374-382.

    12. [12]

      [5] C. Ná jera, J.M. Sansano, Catalytic asymmetric synthesis of α-amino acids, Chem. Rev. 107(2007) 4584-4671.

    13. [13]

      [6] G.T. Notte, T. Sammakia, Kinetic resolution of protected α-amino acid derivatives by a chiral O-nucleophilic acyl transfer catalyst, J. Am. Chem. Soc. 128(2006) 4230-4231.

    14. [14]

      [7] (a) L. Ackermann, Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations:mechanism and scope, Chem. Rev. 111(2011) 1315-1345;

    15. [15]

      (b) X. Chen, K.M. Engle, D.H. Wang, J.Q. Yu, Palladium(Ⅱ)-catalyzed C-H activation/C-C cross-coupling reactions:versatility and practicality, Angew. Chem. (Ⅰ)nt. Ed. 48(2009) 5094-5115;

    16. [16]

      (c) K.M. Engle, T.S. Mei, M. Wasa, J.Q. Yu, Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions, Acc. Chem. Res. 45(2012) 788-802;

    17. [17]

      (d) R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer, O. Baudoin, Functionalization of organic molecules by transition-metal-catalyzed C(sp3)-H activation, Chem. Eur. J. 16(2010) 2654-2672;

    18. [18]

      (e) (Ⅰ).A.(Ⅰ). Mkhalid, J.H. Barnard, T.B. Marder, J.M. Murphy, J.F. Hartwig, C-H activation for the construction of C-B bonds, Chem. Rev. 110(2010) 890-931;

    19. [19]

      (f) S.R. Neufeldt, M.S. Sanford, Controlling site selectivity in palladium-catalyzed C-H bond functionalization, Acc. Chem. Res. 45(2012) 936-946;

    20. [20]

      (g) X.X. Qi, P.H. Chen, G.S. Liu, Advances and challenges in palladium-catalyzed intermolecular selective allylic C-H functionalization of alkenes, Sci. China Chem. 58(2015) 1249-1251;

    21. [21]

      (h) Y. Rao, G. Shan, X.L. Yang, Some recent advances in transition-metal-catalyzed ortho sp2 C-H functionalization using Ru, Rh, and Pd, Sci. China Chem. 57(2014) 930-944;

    22. [22]

      (i) J.B. Wang, Gold-catalyzed chemo-and site-selective direct C-H functionalization of phenols with diazo compounds, Sci. China Chem. 57(2014) 1057;

    23. [23]

      (j) K.H. Wang, F.D. Hu, Y. Zhang, J.B. Wang, Directing group-assisted transitionmetal-catalyzed vinylic C-H bond functionalization, Sci. China Chem. 58(2015) 1252-1265;

    24. [24]

      (k) Y.H. Yang, C.Y. Wang, Direct silylation reactions of inert C-H bonds via transition metal catalysis, Sci. China Chem. 58(2015) 1266-1279.

    25. [25]

      [8] (a) D.Y.K. Chen, S.W. Youn, C-H activation:a complementary tool in the total synthesis of complex natural products, Chem. Eur. J. 18(2012) 9452-9474;

    26. [26]

      (b) A.F.M. Noisier, M.A. Brimble, C-H functionalization in the synthesis of amino acids and peptides, Chem. Rev. 114(2014) 8775-8806.

    27. [27]

      [9] B.V.S. Reddy, L.R. Reddy, E.J. Corey, Novel acetoxylation and C-C coupling reactions at unactivated positions in α-amino acid derivatives, Org. Lett. 8(2006) 3391-3394.

    28. [28]

      [10] (a) R. Giri, J. Liang, J.G. Lei, et al., Pd-catalyzed stereoselective oxidation of methyl groups by inexpensive oxidants under mild conditions:a dual role for carboxylic anhydrides in catalytic C-H bond oxidation, Angew. Chem. (Ⅰ)nt. Ed. 44(2005) 7420-7424;

    29. [29]

      (b) L.V. Desai, H.A. Malik, M.S. Sanford, Oxone as an inexpensive, safe, and environmentally benign oxidant for C-H bond oxygenation, Org. Lett. 8(2006) 1141-1144;

    30. [30]

      (c) V.G. Zaitsev, D. Shabashov, O. Daugulis, Highly regioselective arylation of sp3 C-H bonds catalyzed by palladium acetate, J. Am. Chem. Soc. 127(2005) 13154-13155.

    31. [31]

      [11] S.Y. Zhang, G. He, Y. Zhao, et al., Efficient alkyl ether synthesis via palladiumcatalyzed, picolinamide-directed alkoxylation of unactivated C(sp3)-H and C(sp2)-H bonds at remote positions, J. Am. Chem. Soc. 134(2012) 7313-7316.

    32. [32]

      [12] K. Chen, S.Q. Zhang, H.Z. Jiang, J.W. Xu, B.F. Shi, Practical synthesis of anti-bhydroxy-α-amino acids by Pd(Ⅱ)-catalyzed sequential C(sp3)-H functionalization, Chem. Eur. J. 21(2015) 3264-3270.

    33. [33]

      [13] (a) Q.Q. He, G.M. Fang, L. Liu, Design of thiol-containing amino acids f or native chemical ligation at non-Cys sites, Chin. Chem. Lett. 24(2013) 265-269;

    34. [34]

      (b) H. Liu, X. Li, Synthesis of highly-strained cyclic tetrapeptides via peptide hydrazide based ligation, Acta Chim. Sin. 72(2014) 1197-1198;

    35. [35]

      (c) G.M. Fang, J.X. Wang, L. Liu, Convergent chemical synthesis of proteins by ligation of peptide hydrazides, Angew. Chem. (Ⅰ)nt. Ed. 51(2012) 10347-10350;

    36. [36]

      (d) G.M. Fang, Y.M. Li, F. Shen, et al., Protein chemical synthesis by ligation of peptide hydrazides, Angew. Chem. (Ⅰ)nt. Ed. 50(2011) 7645-7649.

    37. [37]

      [14] W. Gong, G. Zhang, T. Liu, R. Giri, J.Q. Yu, Site-selective C(sp3)-H functionalization of di-, tri-, and tetrapeptides at the N-terminus, J. Am. Chem. Soc. 136(2014) 16940-16946.

    38. [38]

      [15] G. He, Y. Zhao, S. Zhang, C. Lu, G. Chen, Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium catalyzed intramolecular amination of C(sp3)-H and C(sp2)-H bonds at γ and δ positions, J. Am. Chem. Soc. 134(2012) 3-6.

    39. [39]

      [16] G. He, S.Y. Zhang, W.A. Nack, Q. Li, G. Chen, Use of a readily removable auxiliary group for the synthesis of pyrrolidones by the palladium-catalyzed intramolecular amination of unactivated γ C(sp3)-H bonds, Angew. Chem. (Ⅰ)nt. Ed. 52(2013) 11124-11128.

    40. [40]

      [17] Q. Zhang, K. Chen, W. Rao, et al., Stereoselective synthesis of chiral α-amino-blactams through palladium(Ⅱ)-catalyzed sequential monoarylation/amidation of C(sp3)-H bonds, Angew. Chem. (Ⅰ)nt. Ed. 52(2013) 13588-13592.

    41. [41]

      [18] L.S. Zhang, G. Chen, X. Wang, et al., Direct borylation of primary C-H bonds in functionalized molecules by palladium catalysis, Angew. Chem. (Ⅰ)nt. Ed. 53(2014) 3899-3903.

    42. [42]

      [19] R.Y. Zhu, K. Tanaka, G.C. Li, et al., Ligand-enabled stereoselective β-C(sp3)-H fluorination:synthesis of unnatural enantiopure anti-β-fluoro-α-amino acids, J. Am. Chem. Soc. 137(2015) 7067-7070.

    43. [43]

      [20] Q. Zhang, X.S. Yin, K. Chen, S.Q. Zhang, B.F. Shi, Stereoselective synthesis of chiral β-fluoro α-amino acids via Pd(Ⅱ)-catalyzed fluorination of unactivated methylene C(sp3)-H bonds:scope and mechanistic studies, J. Am. Chem. Soc. 137(2015) 8219-8226.

    44. [44]

      [21] J. Miao, K. Yang, M. Kurek,H. Ge, Palladium-catalyzed site-selective fluorination of unactivated C(sp3)-H bonds, Org. Lett. 17(2015) 3738-3741.

    45. [45]

      [22] L.D. Tran, O. Daugulis, Nonnatural amino acid synthesis by using carbon-hydrogen bond functionalization methodology, Angew. Chem. (Ⅰ)nt. Ed. 51(2012) 5188-5191.

    46. [46]

      [23] (a) D. Shabashov, O. Daugulis, Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon-hydrogen bonds, J. Am. Chem. Soc. 132(2010) 3965-3972;

    47. [47]

      (b) L.M. Xu, B.J. Li, Z. Yang, Z.J. Shi, Organopalladium((Ⅰ)V) chemistry, Chem. Soc. Rev. 39(2010) 712-733;

    48. [48]

      (c) A.J. Hickman, M.S. Sanford, High-valent organometallic copper and palladium in catalysis, Nature 484(2012) 177-185.

    49. [49]

      [24] (a) D.C. Powers, M.A.L. Geibel, J.E.M.N. Klein, T. Ritter, Bimetallic palladium catalysis:direct observation of Pd(Ⅲ)-Pd(Ⅲ) intermediates, J. Am. Chem. Soc. 131(2009) 17050-17051;

    50. [50]

      (b) N.R. Deprez, M.S. Sanford, Synthetic and mechanistic studies of Pd-catalyzed C-H arylation with diaryliodonium salts:evidence for a bimetallic high oxidation state Pd intermediate, J. Am. Chem. Soc. 131(2009) 11234-11241.

    51. [51]

      [25] J. He, S. Li, Y. Deng, et al., Ligand-controlled C(sp3)-H arylation and olefination in synthesis of unnatural chiral α-amino acids, Science 343(2014) 1216-1220.

    52. [52]

      [26] J. He, R. Takise, H. Fu, J.Q. Yu, Ligand-enabled cross-coupling of C(sp3)-H bonds with arylsilanes, J. Am. Chem. Soc. 137(2015) 4618-4621.

    53. [53]

      [27] K.S. Chan, M. Wasa, L. Chu, et al., Ligand-enabled cross-coupling of C(sp3)-H bonds with arylboron reagents via Pd(Ⅱ)/Pd(0) catalysis, Nat. Chem. 6(2014) 146-150.

    54. [54]

      [28] B. Wang, W.A. Nack, G. He, S.Y. Zhang, G. Chen, Palladium-catalyzed trifluoroacetate-promoted mono-arylation of the β-methyl group of alanine at room temperature:synthesis of β-arylated α-amino acids through sequential C-H functionalization, Chem. Sci. 5(2014) 3952-3957.

    55. [55]

      [29] K. Chen, S.Q. Zhang, J.W. Xu, F. Hu, B.F. Shi, A general and practical palladiumcatalyzed monoarylation of β-methyl C(sp3)-H of alanine, Chem. Commun. 50(2014) 13924-13927.

    56. [56]

      [30] R. Feng, B. Wang, Y. Liu, Z. Liu, Y. Zhang, Efficient synthesis of cis-3-substituted prolines by bidentate-assisted palladium catalysis, Eur. J. Org. Chem. 2015(2015) 142-151.

    57. [57]

      [31] M. Fan, D. Ma, Palladium-catalyzed direct functionalization of 2-aminobutanoic acid derivatives:application of a convenient and versatile auxiliary, Angew. Chem. (Ⅰ)nt. Ed. 52(2013) 12152-12155.

    58. [58]

      [32] N. Rodriguez, J.A. Romero-Revilla, M.A. Fernandez-(Ⅰ)banez, J.C. Carretero, Palladium-catalyzed N-(2-pyridyl)sulfonyl-directed C(sp3)-H g-arylation of amino acid derivatives, Chem. Sci. 4(2013) 175-179.

    59. [59]

      [33] G. He, G. Chen, A practical strategy for the structural diversification of aliphatic scaffolds through the palladium-catalyzed picolinamide-directed remote functionalization of unactivated C(sp3)-H bonds, Angew. Chem. (Ⅰ)nt. Ed. 50(2011) 5192-5196.

    60. [60]

      [34] (a) Y. Feng, G. Chen, Total synthesis of celogentinjC by stereoselective C-H activation, Angew. Chem. (Ⅰ)nt. Ed. 49(2010) 958-961;

    61. [61]

      (b) G. He, S.Y. Zhang, W.A. Nack, et al., Total synthesis of Hibispeptin A via Pdcatalyzed C(sp3)-H arylation with sterically hindered aryl iodides, Org. Lett. 16(2014) 6488-6491.

    62. [62]

      [35] (a) X.H. Wei, G.W. Wang, S.D. Yang, Enantioselective synthesis of arylglycine derivatives by direct C-H oxidative cross-coupling, Chem. Commun. 51(2015) 832-835;

    63. [63]

      (b) F. Bellina, R. Rossi, Transition metal-catalyzed direct arylation of substrates with activated sp3-hybridized C-H bonds and some of their synthetic equivalents with aryl halides and pseudohalides, Chem. Rev. 110(2010) 1082-1146;

    64. [64]

      (c) K.Z. Li, Q. Wu, J.B. Lan, J.S. You, Coordinating activation strategy for C(sp3)-H/C(sp3)-Hcross-couplingtoaccessβ-aromatica-aminoacids,Nat.Commun.6(2015).

    65. [65]

      [36] B. Wang, C. Lu, S.Y. Zhang, et al., Palladium-catalyzed stereoretentive olefination of unactivated C(sp3)-H bonds with vinyl iodides at room temperature:synthesis of β-vinyl α-amino acids, Org. Lett. 16(2014) 6260-6263.

    66. [66]

      [37] B. Wang, G. He, G. Chen, Synthesis of β-alkynyl α-amino acids via palladiumcatalyzed alkynylation of unactivated C(sp3)-H bonds, Sci. China Chem. 58(2015) 1345-1348.

    67. [67]

      [38] S.Y. Zhang, G. He, W.A. Nack, et al., Palladium-catalyzed picolinamide-directed alkylation of unactivated C(sp3)-H bonds with alkyl iodides, J. Am. Chem. Soc. 135(2013) 2124-2127.

    68. [68]

      [39] S.Y. Zhang, Q. Li, G. He, W.A. Nack, G. Chen, Stereoselective synthesis of β-alkylated α-amino acids via palladium-catalyzed alkylation of unactivated methylene C(sp3)-H bonds with primary alkyl halides, J. Am. Chem. Soc. 135(2013) 12135-12141.

    69. [69]

      [40] K. Chen, F. Hu, S.Q. Zhang, B.F. Shi, Pd(Ⅱ)-catalyzed alkylation of unactivated C(sp3)-H bonds:efficient synthesis of optically active unnatural α-amino acids, Chem. Sci. 4(2013) 3906-3911.

    70. [70]

      [41] K. Chen, B.F. Shi, Sulfonamide-promoted palladium(Ⅱ)-catalyzed alkylation of unactivated methylene C(sp3)-H bonds with alkyl iodides, Angew. Chem. (Ⅰ)nt. Ed. 53(2014) 11950-11954.

    71. [71]

      [42] (a) K. Chen, Z.W. Li, P.X. Shen, H.W. Zhao, Z.J. Shi, Development of modifiable bidentate amino oxazoline directing group for Pd-catalyzed arylation of secondary C-H bonds, Chem. Eur. J. 21(2015) 7389-7393;

    72. [72]

      (b) G. Rouquet, N. Chatani, Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups, Angew. Chem. (Ⅰ)nt. Ed. 52(2013) 11726-11743.

    73. [73]

      [43] (a) R. Shang, L. (Ⅰ)lies, E. Nakamura, (Ⅰ)ron-catalyzed directed C(sp2)-H and C(sp3)-H functionalization with trimethylaluminum, J. Am. Chem. Soc. 137(2015) 7660-7663;

    74. [74]

      (b) Q. Zhang, Y. Lv, Y. Li, T. Xiong, Q. Zhang, Copper-catalyzed benzylic sp3 C-H amination reaction of amidines:synthesis of quinazoline derivatives, Acta Chim. Sin. 72(2014) 1139-1143.

    75. [75]

      [44] X.W. Gao, Q.Y. Meng, J.X. Li, et al., Visible light catalysis assisted site-specific functionalization of amino acid derivatives by C-H bond activation without oxidant:cross-coupling hydrogen evolution reaction, ACS Catal. 5(2015) 2391-2396.

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    3. [3]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    4. [4]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    5. [5]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    6. [6]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    7. [7]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    8. [8]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    9. [9]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    10. [10]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    11. [11]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    12. [12]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    13. [13]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    14. [14]

      Kang WeiJiayu LiWen ZhangBing YuanMing-De LiPingwu Du . A strained π-extended [10]cycloparaphenylene carbon nanoring. Chinese Chemical Letters, 2024, 35(5): 109055-. doi: 10.1016/j.cclet.2023.109055

    15. [15]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    16. [16]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    17. [17]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    18. [18]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    19. [19]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    20. [20]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

Metrics
  • PDF Downloads(0)
  • Abstract views(579)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return