Citation: Bei-Bei Hu, Yue Yuan, Xiao-Ping Zhou, San-Ming Li. Synthesis and properties of a novel bolaamphiphile surfactant derived from proline[J]. Chinese Chemical Letters, ;2016, 27(03): 447-450. doi: 10.1016/j.cclet.2015.12.019 shu

Synthesis and properties of a novel bolaamphiphile surfactant derived from proline

  • Corresponding author: Yue Yuan,  San-Ming Li, 
  • Received Date: 13 October 2015
    Available Online: 8 December 2015

    Fund Project: This work was supported by National Natural Science Foundation of China for Youth (No.81202481) (No.81202481) Education Department Foundation of Liaoning Province (No.L2015527) (No.L2015527)

  • A novel bolaamphiphile surfactant N,N'-(octane-1,8-diyl)bis(pyrrolidine-2-carboxamide) (DAOP), was designed and synthesized from proline and 1,8-diaminooctane, as the hydrophilic part and hydrophobic part, respectively. After separation and purification, the structures of the synthesized bola surfactants were verified by IR, MS and 1H NMR. The pKa was measured by a titration experiment, the turbidity was determined using a Shimadzu UV-1750 spectrophotometer, and the critical micelle concentration (CMC) values of the synthesized surfactants in water were obtained using the conductivity and fluorescence probe measurements. The synthesized bolaamphiphile surfactants demonstrate the ability of selfassemble to form vesicles that were confirmed with dynamic light scattering and transmission electron microscopy. The results showed that the novel bolaamphiphile surfactant derived from proline might potentially be an excellent carrier for drug delivery.
  • 加载中
    1. [1]

      [1] N. Nuraje, H. Bai, K. Su, Bolaamphiphilic molecules:assembly and applications, Prog. Polym. Sci. 38(2013) 302-343.

    2. [2]

      [2] S. Landsmann, M. Luka, S. Polarz, Bolaform surfactants with polyoxometalate head groups and their assembly into ultra-small monolayer membrane vesicles, Nat. Commun. 3(2012) 1299.

    3. [3]

      [3] Y. Yan, T. Lu, J. Huang, Recent advances in the mixed systems of bolaamphiphiles and oppositely charged conventional surfactants, J. Colloid (Ⅰ)nterface Sci. 337(2009) 1-10.

    4. [4]

      [4] K. Liu, Y. Yao, C. Wang, et al., From bola-amphiphiles to supra-amphiphiles:the transformation from two-dimensional nanosheets into one-dimensional nanofibers with tunable-packing fashion of n-type chromophores, Chemistry 18(2012) 8622-8628.

    5. [5]

      [5] T. Hutter, C. Linder, E. Heldman, S. Grinberg, (Ⅰ)nterfacial and self-assembly properties of bolaamphiphilic compounds derived from a multifunctional oil, J. Colloid (Ⅰ)nterface Sci. 365(2012) 53-62.

    6. [6]

      [6] J. Huang, S. Wang, G. Wu, et al., Mono-molecule-layer nano-ribbons formed by self-assembly of bolaamphiphiles, Soft Matter 10(2014) 1018.

    7. [7]

      [7] G.P. Kumar, P. Rajeshwarrao, Nonionic surfactant vesicular systems for effective drug delivery-an overview, Acta Pharm. Sin. B 1(2011) 208-219.

    8. [8]

      [8] K.D. Danov, R.D. Stanimirova, P.A. Kralchevsky, et al., Sulfonated methyl esters of fatty acids in aqueous solutions:interfacial and micellar properties, J. Colloid (Ⅰ)nterface Sci. 457(2015) 307-318.

    9. [9]

      [9] S.B. Yi, H.F. Gao, Q. Li, et al., Synthesis and self-assembly behavior of 2,5-diphenylethynyl thiophene based bolaamphiphiles, Chin. Chem. Lett. 26(2015) 872-876.

    10. [10]

      [10] R. Muzzalupo, F.P. Nicoletta, S. Trombino, et al., A new crown ether as vesicular carrier for 5-fluoruracil:synthesis, characterization and drug delivery evaluation, Colloid Surf. B 58(2007) 197-202.

    11. [11]

      [11] J. Kwak, S.Y. Lee, Enhanced photoluminescence by tyrosine-containing bolaamphiphile self-assembly, Langmuir 29(2013) 4477-4484.

    12. [12]

      [12] M. Khan, C.Y. Ang, N. Wiradharma, et al., Diaminododecane-based cationic bolaamphiphile as a non-viral gene delivery carrier, Biomaterials 33(2012) 4673-4680.

    13. [13]

      [13] C. Valery, F. Artzner, M. Paternostre, Peptide nanotubes:molecular organisations, self-assembly mechanisms and applications, Soft Matter 7(2011) 9583-9594.

    14. [14]

      [14] M. Carafa, L. Di Marzio, C. Marianecci, et al., Designing novel pH-sensitive nonphospholipid vesicle:characterization and cell interaction, Eur. J. Pharm. Sci. 28(2006) 385-393.

    15. [15]

      [15] D.R. Nogueira, L.E. Scheeren, M. Pilar Vinardell, et al., Nanoparticles incorporating pH-responsive surfactants as a viable approach to improve the intracellular drug delivery, Mater. Sci. Eng. C-Mater. 57(2015) 100-106.

    16. [16]

      [16] J. Kwak, S.Y. Lee, pH-sensitive transformation of the peptidic bolaamphiphile selfassembly:exploitation for the pH-triggered chemical reaction, Colloid Surf. B 115(2014) 406-411.

    17. [17]

      [17] R. Bordes, K. Holmberg, Amino acid-based surfactants-do they deserve more attention? Adv. Colloid (Ⅰ)nterface 222(2015) 79-91.

    18. [18]

      [18] J.R. Yao, D.H. Xiao, X. Chen, et al., Synthesis and solid-state secondary structure investigation of silk-proteinlike multiblock polymers, Macromolecules 36(2003) 7508-7512.

    19. [19]

      [19] J. Xu, S. Chen, G. Tang, X. Wang, The synthesis of amide dendritic gelators and its self-assembly behavior in MMA, J. Macromol. Sci. A 48(2011) 896-903.

    20. [20]

      [20] H. Yin, Z. Zhou, J. Huang, R. Zheng, Y. Zhang, Temperature-induced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system, Angew. Chem. (Ⅰ)nt. Ed. 42(2003) 2188-2191.

    21. [21]

      [21] J. Zhang, L. Bing, G.A. Reineccius, Comparison of modified starch and Quillaja saponins in the formation and stabilization of flavor nanoemulsions, Food Chem. 192(2016) 53-59.

    22. [22]

      [22] A.(Ⅰ). Mitsionis, T.C. Vaimakis, Estimation of AOT and SDS CMC in a methanol using conductometry, viscometry and pyrene fluorescence spectroscopy methods, Chem. Phys. Lett. 547(2012) 110-113.

    23. [23]

      [23] E. Acosta, M. Bisceglia, J.C. Fernandez, Electric birefringence of AOT/water solutions, Colloid Surf. A 161(2000) 417-422.

    24. [24]

      [24] V. Torchilin, Tumor delivery of macromolecular drugs based on the EPR effect, Adv. Drug Deliv. Rev. 63(2011) 131-135.

    25. [25]

      [25] P. Yang, J. Singh, S. Wettig, et al., Enhanced gene expression in epithelial cells transfected with amino acid-substituted gemini nanoparticles, Eur. J. Pharm. Biopharm. 75(2010) 311-320.

  • 加载中
    1. [1]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    4. [4]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    5. [5]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    6. [6]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    7. [7]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    8. [8]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    9. [9]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    10. [10]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    11. [11]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    12. [12]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393

    13. [13]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    14. [14]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    15. [15]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    16. [16]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    17. [17]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    18. [18]

      Hao DengYuxin HuiChao ZhangQi ZhouQiang LiHao DuDerek HaoGuoxiang YangQi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078

    19. [19]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    20. [20]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

Metrics
  • PDF Downloads(0)
  • Abstract views(507)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return