Citation: You-Hua Xiao, Yu Shao, Xu-Xu Ye, Hao Cui, De-Lian Wang, Xia-Heng Zhou, Sheng-Ling Sun, Lin Cheng. Microporous aromatic polyimides derived from triptycene-based dianhydride[J]. Chinese Chemical Letters, ;2016, 27(03): 454-458. doi: 10.1016/j.cclet.2015.12.018 shu

Microporous aromatic polyimides derived from triptycene-based dianhydride

  • Corresponding author: Lin Cheng, 
  • Received Date: 30 June 2015
    Available Online: 22 November 2015

    Fund Project: We thank the National Natural Science Foundation of China (No.51473055) for financial support. (No.51473055)

  • A novel triptycene-based dianhyride as a shape-persistent building block with high internal free volume was conveniently synthesized via solvothermal method. Subsequently, three all-aromatic polyimides, PIa, PIb and PIc, were prepared by a one-step polycondensation of triptycene-2,3,6,7-tetracarboxylic dianhydride with 2,2'-bis(trifluoromethyl)benzidine, m-tolidine and 3,3',5,5'-tetramethylbenzidine, respectively. The corresponding polymers exhibit good solubility, excellent thermal stability, significant microporosity with large BET surface areas of up to 623 m2 g-1, as well as an unexpected optical property with a transmittance of 85% at 450 nm as~20 μm membranes.
  • 加载中
    1. [1]

      [1] D.J. Liaw, K.L. Wang, Y.C. Huang, et al., Advanced polyimide materials:syntheses, physical properties and applications, Prog. Polym. Sci. 37(2012) 907-974.

    2. [2]

      [2] P.D. Bartlett, M.J. Ryan, S.G. Cohen, Triptycene1(9,10-o-benzenoanthracene), J. Am. Chem. Soc. 64(1942) 2649-2653.

    3. [3]

      [3] N. Seiki, Y. Shoji, T. Kajitani, et al., Rational synthesis of organic thin films with exceptional long-range structural integrity, Science 348(2015) 1122-1126.

    4. [4]

      [4] T.M. Swager, (Ⅰ)ptycenes in the design of high performance polymers, Acc. Chem. Res. 41(2008) 1181-1189.

    5. [5]

      [5] N.T. Tsui, A.J. Paraskos, L. Torun, T.M. Swager, E.L. Thomas, Minimization of internal molecular free volume:amechanismfor the simultaneous enhancement ofpolymer stiffness, strength, and ductility, Macromolecules 39(2006) 3350-3358.

    6. [6]

      [6] M. Carta, M. Croad, R. Malpass-Evans, et al., Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers, Adv. Mater. 26(2014) 3526-3531.

    7. [7]

      [7] S.A. Sydlik, Z.H. Chen, T.M. Swager, Triptycene polyimides:soluble polymers with high thermal stability and low refractive indices, Macromolecules 44(2011) 976-980.

    8. [8]

      [8] B.S. Ghanem, R. Swaidan, E. Litwiller, (Ⅰ). Pinnau, Ultra-microporous triptycenebased polyimide membranes for high-performance gas separation, Adv. Mater. 26(2014) 3688-3692.

    9. [9]

      [9] M.J. Huang, C.H. Hsu, J. Wang, et al., Selective assemblies of giant tetrahedra via precisely controlled positional interactions, Science 348(2015) 424-428.

    10. [10]

      [10] W.B. Zhang, X.F. Yu, C.L. Wang, et al., Molecular nanoparticles are unique elements for macromolecular science:From "nanoatoms" to giant molecules, Macromolecules 47(2014) 1221-1239.

    11. [11]

      [11] L. Cheng, X.Q. Xiong, Z. Xu, B. Jing, J.X. Wang. Procedures for preparation of triptycene 2,3,6,7-tetracarboxylic dianhydride. Patent CN101481378B.

    12. [12]

      [12] Z. Xu, X.Q. Xiong, L. Cheng, Novel hyperbranched polyimides from 2,6,12-triaminotriptycene, Chin. Chem. Lett. 19(2008) 1127-1130.

    13. [13]

      [13] M. Rybáčková, M. Bělohradský, P. Holý, et al., Synthesis of highly symmetrical triptycene tetra-and hexacarboxylates, Synthesis 10(2007) 1554-1558.

    14. [14]

      [14] E. De Barry Barnett, N.F. Goodway, J.W. Watson, Beiträge zur Kenntnis der Anthracen-Derivate (X. Mitteil.), Ber. Dtsch. Chem. Ges. 66(1933) 1876-1891.

    15. [15]

      [15] A. Sakakura, T. Ohkubo, R. Yamashita, M. Akakura, K. (Ⅰ)shihara, Brønsted baseassisted boronic acid catalysis for the dehydrative intramolecular condensation of dicarboxylic acids, Org. Lett. 13(2011) 892-895.

    16. [16]

      [16] G. Demazeau, A. Largeteau, Hydrothermal/solvothermal crystal growth:an old but adaptable process, Z. Anorg. Allg. Chem. 641(2015) 159-163.

    17. [17]

      [17] K. Namratha, K. Byrappa, Novel solution routes of synthesis of metal oxide and hybrid metal oxide nanocrystals, Prog. Cryst. Growth Charact. Mater. 58(2012) 14-42.

    18. [18]

      [18] O.K. Farha, J.T. Hupp, Rational design, synthesis, purification, and activation of metal-organic framework materials, Acc. Chem. Res. 43(2010) 1166-1175.

    19. [19]

      [19] X.Z. Fang, Z.H. Yang, S.B. Zhang, L.X. Gao, M.X. Ding, Polyimides derived from mellophanic dianhydride, Macromolecules 35(2002) 8708-8717.

    20. [20]

      [20] S.J. Luo, Q. Liu, B.H. Zhang, et al., Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation, J. Membr. Sci. 480(2015) 20-30.

    21. [21]

      [21] X.J. Zheng, Y. Shao, Y.H. Xiao, S.H. Du, L. Cheng, Synthesis and properties of polyimides derived from triptycene with D3h symmetry, Acta Polym. Sin. 11(2014) 1501-1507.

  • 加载中
    1. [1]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    2. [2]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    3. [3]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    4. [4]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    5. [5]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    6. [6]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    7. [7]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    8. [8]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    9. [9]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    10. [10]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    11. [11]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    12. [12]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    13. [13]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    14. [14]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    15. [15]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    16. [16]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    19. [19]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    20. [20]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

Metrics
  • PDF Downloads(0)
  • Abstract views(532)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return