Citation: Dai Wu, Ying Gao, Wan-Guo Tian, Yun-Hui Li, Weiting Yang, Zhong-Ming Sun. Layered and three-dimensional uranyl-organic assemblies with 4,40-oxidiphthalic acid[J]. Chinese Chemical Letters, ;2016, 27(03): 325-329. doi: 10.1016/j.cclet.2015.12.016 shu

Layered and three-dimensional uranyl-organic assemblies with 4,40-oxidiphthalic acid

  • Corresponding author: Ying Gao,  Weiting Yang, 
  • Received Date: 17 August 2015
    Available Online: 29 September 2015

    Fund Project: We thank the support of this work by National Natural Science Foundation of China (Nos.21571171, 21301168, U1407101) (Nos.21571171, 21301168, U1407101)Jilin Province Youth Foundation (No.20130522123JH). (No.20130522123JH)

  • Hydrothermal reactions of uranyl nitrate and 4,40-oxidiphthalic acid (H4L) resulted in the formation of three new uranyl-organic framework materials, namely (NH4)2[(UO2)3(L)2]·5H2O (1), (NEt4)[(UO2)3 (H2O)(L)(HL)] (2) and (UO2)7(H2O)2(phen)4(L)2(HL)2 (3) (NEt4=tetraethylammonium, phen=1,10-phenanthroline). These three structures all comprise common uranyl pentagonal bipyramids. In 1, UO7 polyhedra are linked by hexadentate ligands to form a 3D framework with 1D channels, in which are located NH4+ ions and water molecules. While in 2, the organic ligands adopt pentadentate and hexadentate coordination modes, ligating UO7 units to create a layered structure with channels filled by NEt4+ ions. For 3, uranyl square bipyramids are also accommodated together with pentagonal bipyramids, which are linked by tetradentate carboxylate ligands to produce the layered assembly. Phen molecules also coordinate to the uranyl centers to build up the structure. Luminescent studies indicate that 2 and 3 exhibit the characteristic uranyl emission.
  • 加载中
    1. [1]

      [1] T.R. Cook, Y.R. Zheng, P.J. Stang, Metal-organic frameworks and self-assembled supramolecular coordination complexes:comparing and contrasting the design, synthesis, and functionality of metal-organic materials, Chem. Rev. 113(2013) 734-777.

    2. [2]

      [2] J. Park, D.W. Feng, H.C. Zhou, Structure-assisted functional anchor implantation in robust metal-organic frameworks with ultralarge pores, J. Am. Chem. Soc. 137(2015) 1663-1672.

    3. [3]

      [3] W. Wang, Y. Yuan, F.X. Sun, G.S. Zhu, Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2, Chin. Chem. Lett. 25(2014) 1407-1410.

    4. [4]

      [4] T. Zheng, M. Ren, S.S. Bao, L.M. Zheng, M2(pbtcH)(phen)2(H2O)2[M(Ⅱ)=Co, Ni]:mixed-ligated metal phosphonates based on 5-phosphonatophenyl-1,2,4-tricarboxylic acid showing double chain structures, Chin. Chem. Lett. 25(2014) 835-838.

    5. [5]

      [5] Y.X. Sun, W.Y. Sun, (Ⅰ)nfluence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25(2014) 823-828.

    6. [6]

      [6] K.X. Wang, J.S. Chen, Extended structures and physicochemical properties of uranyl-organic compounds, Acc. Chem. Res. 44(2011) 531-540.

    7. [7]

      [7] T. Loiseau, (Ⅰ). Mihalcea, N. Henry, C. Volkringer, The crystal chemistry of uranium carboxylates, Coord. Chem. Rev. 266-267(2014) 69-109.

    8. [8]

      [8] K.E. Knope, C.L. Cahill, Uranyl phosphonates:a structural survey, in:A. Clearfield, K. Demadis (Eds.), Metal Phosphonate Chemistry:From Synthesis to Applications, The Royal Society of Chemistry, London, 2012, pp. 586-606.

    9. [9]

      [9] Z.H. Weng, Z.H. Zhang, T. Olds, M. Sterniczuk, P.C. Burns, Copper((Ⅰ)) and copper(Ⅱ) uranyl heterometallic hybrid materials, (Ⅰ)norg. Chem. 53(2014) 7993-7998.

    10. [10]

      [10] P.O. Adelani, N.D. Cook, P.C. Burns, Use of 2,2-bipyrimidine for the preparation of UO22+-3d diphosphonates, Cryst. Growth Des. 14(2014) 5692-5699.

    11. [11]

      [11] P. Thuéry, J. Harrowfield, Uranyl-organic frameworks with polycarboxylates:unusual effects of a coordinating solvent, Cryst. Growth Des. 14(2014) 1314-1323.

    12. [12]

      [12] P. Thuery, J. Harrowfield, Chiral one-to three-dimensional uranyl-organic assemblies from (1R,3S)-(+)-camphoric acid, CrystEngComm 16(2014) 2996-3004.

    13. [13]

      [13] T.G. Parker, J.N. Cross, M.J. Polinski, J. Lin, T.E. Albrecht-Schmitt, (Ⅰ)onothermal and hydrothermal flux syntheses of five new uranyl phosphonates, Cryst. Growth Des. 14(2014) 228-235.

    14. [14]

      [14] W.T. Yang, T.G. Parker, Z.M. Sun, Structural chemistry of uranium phosphonates, Coord. Chem. Rev. 303(2015) 86-109.

    15. [15]

      [15] W.T. Yang, F.Y. Yi, T. Tian, W.G. Tian, Z.M. Sun, Structural variation within heterometallic uranyl hybrids based on flexible alkyldiphosphonate ligands, Cryst. Growth Des. 14(2014) 1366-1374.

    16. [16]

      [16] A.T. Kerr, S.A. Kumalah, K.T. Holman, R.J. Butcher, C.L. Cahill, Uranyl coordination polymers incorporating η5-cyclopentadienyliron-functionalized η6-phthalate metalloligands:Syntheses, structures and photophysical properties, J. (Ⅰ)norg. Organomet. Polym. 24(2014) 128-136.

    17. [17]

      [17] W.T. Yang, S. Dang, H. Wang, et al., Synthesis, structures, and properties of uranyl hybrids constructed by a variety of mono-and polycarboxylic acids, (Ⅰ)norg. Chem. 52(2013) 12394-12402.

    18. [18]

      [18] H.Y. Wu, R.X. Wang, W.T. Yang, et al., 3-Fold-interpenetrated uranium-organic frameworks:new strategy for rationally constructing three-dimensional uranyl organic materials, (Ⅰ)norg. Chem. 51(2012) 3103-3107.

    19. [19]

      [19] W.T. Yang, W.G. Tian, X.X. Liu, L. Wang, Z.M. Sun, Syntheses, structures, luminescence, and photocatalytic properties of a series of uranyl coordination polymers, Cryst. Growth Des. 14(2014) 5904-5911.

    20. [20]

      [20] Siemens Analytical X-ray (Ⅰ)nstruments, (Ⅰ)nc., SMART and SA(Ⅰ)NT (software packages), Siemens Analytical X-ray (Ⅰ)nstruments, (Ⅰ)nc., Madison, W(Ⅰ), 1996.

    21. [21]

      [21] Siemens (Ⅰ)ndustrial Automation, (Ⅰ)nc., SHELXTL Program, version 5.1, Siemens (Ⅰ)ndustrial Automation, (Ⅰ)nc., Madison, W(Ⅰ), 1997.

    22. [22]

      [22] P.C. Burns, R.C. Ewing, F.C. Hawthorne, The crystal chemistry of hexavalent uranium:polyhedron geometries, bond-valence parameters, and polymerization of polyhedra, Can. Min. 35(1997) 1551-1570.

    23. [23]

      [23] N.E. Brese, M. O'Keeffe, Bond-valence parameters for solids, Acta Cryst. B 47(1991) 192-197.

    24. [24]

      [24] A. Mer, S. Obbade, M. Rivenet, C. Renard, F. Abraham,[La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology, J. Solid State Chem. 185(2012) 180-186.

    25. [25]

      [25] G. Meinrath, Uranium(V(Ⅰ)) speciation by spectroscopy, J. Radioanal. Nucl. Chem. 224(1997) 119-126.

    26. [26]

      [26] P.O. Adelani, T.E. Albrecht-Schmitt, Syntheses of uranyl diphosphonate compounds using encapsulated cations as structure directing agents, Cryst. Growth Des. 11(2011) 4227-4237.

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393

    3. [3]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    4. [4]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    5. [5]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    6. [6]

      Jingqi Ma Huangjie Lu Junpu Yang Liangwei Yang Jian-Qiang Wang Xianlong Du Jian Lin . Rational design and synthesis of a uranyl-organic hybrid for X-ray scintillation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100275-100275. doi: 10.1016/j.cjsc.2024.100275

    7. [7]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    8. [8]

      Zhao-Xia LianXue-Zhi WangChuang-Wei ZhouJiayu LiMing-De LiXiao-Ping ZhouDan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063

    9. [9]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    10. [10]

      Xue-Zhi WangYi-Tong LiuChuang-Wei ZhouBei WangDong LuoMo XieMeng-Ying SunYong-Liang HuangJie LuoYan WuShuixing ZhangXiao-Ping ZhouDan Li . Amplified circularly polarized luminescence of chiral metal-organic frameworks via post-synthetic installing pillars. Chinese Chemical Letters, 2024, 35(10): 109380-. doi: 10.1016/j.cclet.2023.109380

    11. [11]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    12. [12]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    13. [13]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    14. [14]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    15. [15]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    16. [16]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    17. [17]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    18. [18]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    19. [19]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    20. [20]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

Metrics
  • PDF Downloads(0)
  • Abstract views(489)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return