Citation: Jing Wen, Yun-Lei Luo, Hui-Zhen Zhang, Huan-Huan Zhao, Cheng-He Zhou, Gui-Xin Cai. A green and convenient approach toward benzimidazole derivatives and their antimicrobial activity[J]. Chinese Chemical Letters, ;2016, 27(03): 391-394. doi: 10.1016/j.cclet.2015.12.014 shu

A green and convenient approach toward benzimidazole derivatives and their antimicrobial activity

  • Corresponding author: Cheng-He Zhou,  Gui-Xin Cai, 
  • Received Date: 13 May 2015
    Available Online: 2 July 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (Nos.21004075, 21372186) (Nos.21004075, 21372186) Beijing National Laboratory of Molecular Sciences (BNLMS) (No.20140130) (BNLMS) the Doctoral Fund of Southwest University (No.SWU111075) (No.SWU111075)the Research Funds for the Central Universities (No.XDJK2013C112). (No.XDJK2013C112)

  • N-Alkylated benzimidazole derivatives have been synthesized via the aza-Michael addition reactions of 1H-benzimidazoles to α,β-unsaturated compounds in water and palladium acetate obviously promoted these transformations. The reported method, overcoming the inactivation of palladium under the equivalent nitrogenous conditions, has the advantages of convenient manipulation, atom-economy, as well as environmental friendliness. The bioactive results showed that butyl 3-(5,6-dimethyl-1H-benzo[d]imidazol-1-yl)propanoate (3c) exhibited excellent inhibitory activity against Bacillus subtilis (MIC=16 μg/mL) and Bacillus proteus (MIC=8 μg/mL). Therefore, this process would facilitate the construction of various potential bioactive compounds based on the benzimidazole scaffold under mild conditions.
  • 加载中
    1. [1]

      [1] (a) X.M. Peng, G.X. Cai, C.H. Zhou, Recent developments in azole compounds as antibacterial and antifungal agents, Curr. Top. Med. Chem. 13(2013) 1963-2010;

    2. [2]

      (b) Y. Bansal, O. Silakari, The therapeutic journey of benzimidazoles:a review, Bioorg. Med. Chem. 20(2012) 6208-6236.

    3. [3]

      [2] (a) V. Vajpayee, S.M. Lee, J.W. Park, et al., Growth inhibitory activity of a bisbenzimidazole-bridged arene ruthenium metalla-rectangle and-prism, Organometallics 32(2013) 1563-1566;

    4. [4]

      (b) J.Y. Hu, R. Liu, X.L. Zhu, X. Cai, H.J. Zhu, et al., A highly efficient and selective probe for F- detection based on 1H-imidazo[4,5-b]phenazine derivative, Chin. Chem. Lett. 26(2015) 339-342.

    5. [5]

      [3] J.A. Asensio, E.M. Sánchez, P. Gómez-Romero, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest, Chem. Soc. Rev. 39(2010) 3210-3239.

    6. [6]

      [4] (a) Y.J. Eun, M.Q. Zhou, D. Kiekebusch, et al., Divin:a small molecule inhibitor of bacterial divisome assembly, J. Am. Chem. Soc. 135(2013) 9768-9776;

    7. [7]

      (b) M.Q. Zhou, Y.J. Eun, (Ⅰ).A. Guzei, D.B. Weibel, Structure-activity studies of divin:an inhibitor of bacterial cell division, ACS Med. Chem. Lett. 4(2013) 880-885.

    8. [8]

      [5] (a) J.B. Wright, The chemistry of the benzimidazoles, Chem. Rev. 48(1951) 397-541;

    9. [9]

      (b) P.N. Preston, Synthesis, reactions, and spectroscopic properties of benzimidazoles, Chem. Rev. 74(1974) 279-314;

    10. [10]

      (c) V.A. Mamedov, A.M. Murtazina, Recyclization reactions leading to benzimidazoles, Russ. Chem. Rev. 80(2011) 397-420;

    11. [11]

      (d) S.S. Panda, R. Malik, S.C. Jain, Synthetic approaches to 2-arylbenzimidazoles:a review, Curr. Org. Chem. 16(2012) 1905-1919;

    12. [12]

      (e) R.S. Begunov, G.A. Ryzvanovich, Synthesis of pyrido[1,2-a]benzimidazoles and other fused imidazole derivatives with a bridgehead nitrogen atom, Russ. Chem. Rev. 82(2013) 77-97;

    13. [13]

      (f) N. Zheng, K.W. Anderson, X.H. Huang, H.N. Nguyen, S.L. Buchwald, A palladium-catalyzed regiospecific synthesis of N-aryl benzimidazoles, Angew. Chem. (Ⅰ)nt. Ed. 46(2007) 7509-7512;

    14. [14]

      (g) B.L. Zou, Q.L. Yuan, D.W. Ma, Synthesis of 1,2-disubstituted benzimidazoles by a Cu-catalyzed cascade aryl amination/condensation process, Angew. Chem. (Ⅰ)nt. Ed. 46(2007) 2598-2601;

    15. [15]

      (h) L.M. Stanley, J.F. Hartwig, Regio-and enantioselective N-allylations of imidazole, benzimidazole, and purine heterocycles catalyzed by single-component metallacyclic (Ⅰ)ridium complexes, J. Am. Chem. Soc. 131(2009) 8971-8983;

    16. [16]

      (i) Q. Sun, C.J. Wang, S.S. Gong, Y.J. Ai, H.B. Sun, Cp2ZrCl2-catalyzed synthesis of 2-aminovinyl benzimidazoles under microwave conditions, Chin. Chem. Lett. 26(2015) 297-300.

    17. [17]

      [6] (a) L.W. Xu, C.G. Xia, A catalytic enantioselective aza-michael reaction:novel protocols for asymmetric synthesis of β-amino carbonyl compounds, Eur. J. Org. Chem.2005(2005) 633-639;

    18. [18]

      (b) P.R. Krishna, A. Sreeshailam, R. Srinivas, Recent advances and applications in asymmetric aza-Michael addition chemistry, Tetrahedron 65(2009) 9657-9672;

    19. [19]

      (c) D. Enders, C. Wang, J.X. Liebich, Organocatalytic asymmetric aza-Michael additions, Chem. Eur. J. 15(2009) 11058-11076;

    20. [20]

      (d) A.Y. Rulev, Aza-Michael reaction:achievements and prospects, Russ. Chem. Rev. 80(2011) 197-218;

    21. [21]

      (e) Z. Amara, J. Caron, D. Joseph, Recent contributions from the asymmetric aza-Michael reaction to alkaloids total synthesis, Nat. Prod. Rep. 30(2013) 1211-1225;

    22. [22]

      (f) A. Lauber, B. Zelenay, J. Cvengroš, Asymmetric synthesis of N-stereogenic molecules:diastereoselective double aza-Michael reaction, Chem. Commun. 50(2014) 1195-1197.

    23. [23]

      [7] J. Wang, P.F. Li, S.H. Chan, A.S.C. Chan, F.Y. Kwong, Catalyst-free aza-Michael addition of azole to β,γ-unsaturated-α-keto ester:an efficient access to C-N bond formation, Tetrahedron Lett. 53(2012) 2887-2889.

    24. [24]

      [8] B.K. Liu, Q. Wu, X.Q. Qian, D.S. Lv, X.F. Lin, N-methylimidazole as a promising catalyst for the aza-Michael addition reaction of N-heterocycles, Synthesis 17(2007) 2653-2659.

    25. [25]

      [9] (a) W.B. Wheatley, G.F. Stiner, 1-(β-Aminoalkyl)benzimidazoles, J. Org. Chem. 22(1957) 923-925;

    26. [26]

      (b) A. Horváth, Catalysis and regioselectivity in the Michael addition of azoles. kinetic vs. thermodynamic control, Tetrahedron Lett. 37(1996) 4423-4426;

    27. [27]

      (c) P. Zaderenko, M.C. Ló pez, P. Ballesteros, Addition of azoles and amines to unsymmetrical fumaric esters, J. Org. Chem. 61(1996) 6825-6828;

    28. [28]

      (d) M.J. Bhanushali, N.S. Nandurkar, S.R. Jagtap, B.M. Bhanage, Y(NO3)3·6H2O catalyzed aza-Michael addition of aromatic/hetero-aromatic amines under solvent-free conditions, Catal. Commun. 9(2008) 1189-1195;

    29. [29]

      (e) M.L. Kantam, M. Roy, S. Roy, B. Sreedhar, R.L. De, Polyaniline supported Cu(Ⅰ):an efficient catalyst for C-N bond formation by N-arylation of N(H)-heterocycles and benzyl amines with aryl halides and arylboronic acids, and aza-Michael reactions of amines with activated alkenes, Catal. Commun. 9(2008) 2226-2230;

    30. [30]

      (f) M.N.S. Rad, A. Khalafi-Nezhad,M. Divar, S. Behrouz, Silica sulfuric acid (SSA) as a highly efficient heterogeneous catalyst for persilylation of purine and pyrimidine nucleobases and other N-heterocycles using hmds, Phosphorus Sulfur Silicon Relat. Elem. 185(2010) 1943-1954;

    31. [31]

      (g) F. Medina, C. Michon, F. Agbossou-Niedercorn, (Ⅰ)ntermolecular mono-and dihydroamination of activated alkenes using a recoverable gold catalyst, Eur. J. Org. Chem. 31(2012) 6218-6227;

    32. [32]

      (h) G. Zbancioc, (Ⅰ).(Ⅰ). Mangalagiu, C. Moldoveanu, Ultrasound assisted synthesis of imidazolium salts:an efficient way to ionic liquids, Ultrason. Sonochem. 23(2015) 376-384.

    33. [33]

      [10] (a) R. Breslow, Hydrophobic effects on simple organic reactions in water, Acc. Chem. Res. 24(1991) 159-164;

    34. [34]

      (b) C.J. Li, Organic reactions in aqueous media with a focus on carbon-carbon bond formations:a decade update, Chem. Rev. 105(2005) 3095-3166;

    35. [35]

      (c) R.N. Butler, A.G. Coyne, Water:nature's reaction enforcer-comparative effects for organic synthesis "in-water" and "on-water, Chem. Rev. 110(2010) 6302-6337.

    36. [36]

      [11] L. Chen, C.J. Li, The first palladium-catalyzed 1,4-addition of terminal alkynes to conjugated enones, Chem. Commun. (2004) 2362-2364.

    37. [37]

      [12] (a) C.Y. Wang, Z.F. Xi, Co-operative effect of Lewis acids with transition metals for organic synthesis, Chem. Soc. Rev. 36(2007) 1395-1406;

    38. [38]

      (b) H. Li, G.X. Cai, Z.J. Shi, LiCl-promoted Pd(Ⅱ)-catalyzed ortho carbonylation of N,N-dimethylbenzylamines, Dalton Trans. 39(2010) 10442-10446.

    39. [39]

      [13] H.Z. Zhang, G.L.V. Damu, G.X. Cai, C.H. Zhou, Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Fluconazole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole, Eur. J. Med. Chem. 64(2013) 329-344.

    40. [40]

      [14] H.Z. Zhang, S.F. Cui, S. Nagarajan, et al., A unique one-pot reaction via C-C cleavage from aminomethylene benzimidazoles to access benzimidazolones with wide potentiality, Tetrahedron Lett. 55(2014) 4105-4109.

  • 加载中
    1. [1]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    2. [2]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    3. [3]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    4. [4]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    5. [5]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    6. [6]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    7. [7]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    8. [8]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    9. [9]

      Wenhao ChenJian DuHanbin ZhangHancheng WangKaicheng XuZhujun GaoJiaming TongJin WangJunjun XueTing ZhiLonglu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168

    10. [10]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    11. [11]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    12. [12]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    13. [13]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    14. [14]

      Lu Qi Zhaoyang Chen Xiaoyu Luan Zhiqiang Zheng Yurui Xue Yuliang Li . Atomically dispersed Mn enhanced catalytic performance for overall water splitting on graphdiyne-coated copper hydroxide nanowire. Chinese Journal of Structural Chemistry, 2024, 43(1): 100197-100197. doi: 10.1016/j.cjsc.2023.100197

    15. [15]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    16. [16]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207

    17. [17]

      Guo-Hong GaoRun-Ze ZhaoYa-Jun WangXiao MaYan LiJian ZhangJi-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181

    18. [18]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    19. [19]

      Zhe LiPing-Zhao LiangLi XuFei-Yu YangTian-Bing RenLin YuanXia YinXiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190

    20. [20]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

Metrics
  • PDF Downloads(0)
  • Abstract views(559)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return