Citation:
	            
		            Lun  Song, Li-Min  Ma, Qian  Sun, Wei-Bing  Zhang, Min-Bo  Lan, Jun-Hong  Qian. Discrimination of biothiols in different media with NBD-F as the probe[J]. Chinese Chemical Letters,
							;2016, 27(03): 330-334.
						
							doi:
								10.1016/j.cclet.2015.12.012
						
					
				
					 
				
	        
- 
	                	4-Fluoro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-F) was employed as a colorimetric probe for differential detection of biothiols in different media. The spectral response and the selectivity of NBD-F toward thiols were significantly improved by surfactant micelles. Mercapto group exhibited high reactivity in all the solvents (including Tris-HCl buffer solution, CTAB and SDSmicelles). The 4-thioether derivatives of NBDF reacting with Cys and Hcy but not GSH could transfer to the corresponding 4-amino-substituents via intramolecular nucleophilic aromatic substitution, thus, GSH could be discriminated from Cys/Hcy. In CTAB micelles, the reaction product of NBD-F with Cys is non-fluorescent and it absorbs in longwavelength region. According to the spectral responses of NBD-F toward different low-molecularweight thiols, we could identify Cys, Hcy and GSH from each other.- 
								Keywords:
								
- NBD-F,
- Biothiols,
- Surfactant micelles,
- Fluorescent probe
 
- 
	                	  
- 
	                	
- 
			
                    [1]
                
			[1] (a) S. Zhang, C.N. Ong, H.M. Shen, Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells, Cancer Lett. 208(2004) 143-153; 
 
- 
			
                    [2]
                
			(b) D.M. Townsend, K.D. Tew, H. Tapiero, Sulfur containing amino acids and human disease, Biomed. Pharmacother. 58(2004) 47-55; 
 
- 
			
                    [3]
                
			(c) H. Tapiero, D.M. Townsend, K.D. Tew, The antioxidant role of selenium and seleno-compounds, Biomed. Pharmacother. 57(2003) 134-144; 
 
- 
			
                    [4]
                
			(d) Z.A. Wood, E. Schröder, J.R. Harris, L.B. Poole, Structure, mechanism and regulation of peroxiredoxins, Trends Biochem. Sci. 28(2003) 32-40. 
 
- 
			
                    [5]
                
			[2] (a) C. Hwang, A.J. Sinskey, H.F. Lodish, Oxidized redox state of glutathione in the endoplasmic reticulum, Science 257(1992) 1496-1502; 
 
- 
			
                    [6]
                
			(b) A. Meister, Glutathione metabolism and its selective modification, J. Biol. Chem. 263(1988) 17205-17208; 
 
- 
			
                    [7]
                
			(c) T.P. Dalton, H.G. Shertzer, A. Puga, Regulation of gene expression by reactive oxygen, Annu. Rev. Pharmacol. Toxicol. 39(1999) 67-101; 
 
- 
			
                    [8]
                
			(d) L.A. Herzenberg, S.C. De Rosa, J.G. Dubs, et al., Glutathione deficiency is associated with impaired survival in H(Ⅰ)V disease, Proc. Natl. Acad. Sci. U.S.A. 94(1997) 1967-1972; 
 
- 
			
                    [9]
                
			(e) C. Perricone, C. De Carolis, R. Perricone, Glutathione:a key player in autoimmunity, Autoimmun. Rev. 8(2009) 697-701. 
 
- 
			
                    [10]
                
			[3] (a) L. El-Khairy, P.M. Ueland, H. Refsum, (Ⅰ).M. Graham, S.E. Vollset, Plasma total cysteine as a risk factor for vascular disease:the European concerted action project, Circulation 103(2001) 2544-2549; 
 
- 
			
                    [11]
                
			(b) S. Shahrokhian, Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode, Anal. Chem. 73(2001) 5972-5978; 
 
- 
			
                    [12]
                
			(c) S. Seshadri, A. Beiser, J. Selhub, et al., Plasma homocysteine as a risk factor for dementia and Alzheimer's disease, N. Engl. J. Med. 346(2002) 476-483; 
 
- 
			
                    [13]
                
			(d) H. Refsum, A.D. Smith, P.M. Ueland, et al., Facts and recommendations about total homocysteine determinations:an expert opinion, Clin. Chem. 50(2004) 3-32. 
 
- 
			
                    [14]
                
			[4] (a) X. Chen, Y. Zhou, X. Peng, J. Yoon, Fluorescent and colorimetric probes for detection of thiols, Chem. Soc. Rev. 39(2010) 2120-2135; 
 
- 
			
                    [15]
                
			(b) H.S. Jung, X. Chen, J.S. Kim, J. Yoon, Recent progress in luminescent and colorimetric chemosensors for detection of thiols, Chem. Soc. Rev. 42(2013) 6019-6031. 
 
- 
			
                    [16]
                
			[5] (a) Y. Liu, X. Lv, J. Liu, et al., Construction of a selective fluorescent probe for GSH based on a chloro-functionalized coumarin-enone dye platform, Chem. Eur. J. 21(2015) 4747-4754; 
 
- 
			
                    [17]
                
			(b) X.D. Zeng, X.L. Zhang, B.C. Zhu, et al., A highly selective wavelength-ratiometric and colorimetric probe for cysteine, Dyes Pigm. 94(2012) 10-15; 
 
- 
			
                    [18]
                
			(c) B.X. Zhang, C.P. Ge, J. Yao, et al., Selective selenol fluorescent probes:design, synthesis, structural determinants, and biological applications, J. Am. Chem. Soc. 137(2015) 757-769; 
 
- 
			
                    [19]
                
			(d) L. Yang, W.S. Qu, X. Zhang, et al., Constructing a FRET-based molecular chemodosimeter for cysteine over homocysteine and glutathione by naphthalimide and phenazine derivatives, Analyst 140(2015) 182-189; 
 
- 
			
                    [20]
                
			(e) L. Song, T. Jia, W.J. Lu, et al., Multi-channel colorimetric and fluorescent probes for differentiating between cysteine and glutathione/homocysteine, Org. Biomol. Chem. 12(2014) 8422-8427; 
 
- 
			
                    [21]
                
			(f) Y.H. Li, J.F. Yang, C.H. Liu, et al., Colorimetric and fluorescent detection of biological thiols in aqueous solution, Chin. Chem. Lett. 24(2013) 96-98. 
 
- 
			
                    [22]
                
			[6] (a) M. (Ⅰ)şık, R. Guliyev, S. Kolemen, et al., Designing an intracellular fluorescent probe for glutathione:two modulation sites for selective signal transduction, Org. Lett. 16(2014) 3260-3263; 
 
- 
			
                    [23]
                
			(b) D. Lee, G. Kim, J. Yin, J. Yoon, An aryl-thioether substituted nitrobenzothiadiazole probe for the selective detection of cysteine and homocysteine, Chem. Commun. 51(2015) 6518-6520; 
 
- 
			
                    [24]
                
			(c) L. Wang, H.Y. Chen, H.L. Wang, et al., A fluorescent probe with high selectivity to glutathione over cysteine and homocysteine based on positive effect of carboxyl on nucleophilic substitution in CTAB, Sens. Actuators, B:Chem. 192(2014) 708-713; 
 
- 
			
                    [25]
                
			(d) J. Liu, Y.Q. Sun, Y.Y. Huo, et al., Simultaneous fluorescence sensing of Cys and GSH from different emission channels, J. Am. Chem. Soc. 136(2014) 574-577. 
 
- 
			
                    [26]
                
			[7] (a) L.Y. Niu, Y.S. Guan, Y.Z. Chen, et al., BOD(Ⅰ)PY-based ratiometric fluorescent sensor for highly selective detection of glutathione over cysteine and homocysteine, J. Am. Chem. Soc. 134(2012) 18928-18931; 
 
- 
			
                    [27]
                
			(b) L.Y. Niu, H.R. Zheng, Y.Z. Chen, et al., Fluorescent sensors for selective detection of thiols:expanding the intramolecular displacement based mechanism to new chromophores, Analyst 139(2014) 1389-1395; 
 
- 
			
                    [28]
                
			(c) L.A. Montoya, M.D. Pluth, Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents, Anal. Chem. 86(2014) 6032-6039; 
 
- 
			
                    [29]
                
			(d) Y.H. Chen, J.C. Tsai, T.H. Cheng, et al., Sensitivity evaluation of NBD-SCN towards cysteine/homocysteine and its bioimaging applications, Biosens. Bioelectron. 56(2014) 117-123. 
 
- 
			
                    [30]
                
			[8] (a) Y. Watanabe, K. (Ⅰ)mai, Pre-column labelling for high-performance liquid chromatography of amino acids with 7-fluoro-4-nitrobenzo-2-oxa-13-diazole and its application to protein hydrolysates, J. Chromatogr., A 239(1982) 723-732; 
 
- 
			
                    [31]
                
			(b) T. (Ⅰ)shikawa, H. (Ⅰ)mai, K.Y. Maki, Development of an LC-MS/MS method for the analysis of free sphingoid bases using 4-fluoro-7-nitrobenzofurazan (NBD-F), Lipids 49(2014) 295-304; 
 
- 
			
                    [32]
                
			(c) X.M. Wu, R. Wang, Q.Q. Jiang, et al., Determination of amino acid neurotransmitters in rat hippocampi by HPLC-UV using NBD-F as a derivative, Biomed. Chromatogr. 28(2014) 459-462; 
 
- 
			
                    [33]
                
			(d) Y. Song, T. Funatsu, M. Tsunoda, Amino acids analysis using a monolithic silica column after derivatization with 4-fluoro-7-nitro-21,3-benzoxadiazole (NBD-F), J. Chromatogr. B:Analyt. Technol. Biomed. Life Sci. 879(2011) 335-340. 
 
- 
			
                    [34]
                
			[9] D.J. Birkett, N.C. Price, G.K. Radda, A.G. Salmon, The reactivity of SH groups with a fluorogenic reagent, FEBS Lett. 6(1970) 346-348. 
 
- 
			
                    [35]
                
			[10] (a) S. Uchiyama, K. (Ⅰ)wai, A.P. de Silva, Multiplexing sensory molecules map protons near micellar membranes, Angew. Chem. (Ⅰ)nt. Ed. 47(2008) 4667-4669; 
 
- 
			
                    [36]
                
			(b) J.H. Qian, S.H. Qian, R. Guo, The effects of anionic and cationic surfactants on the hydrolysis of sodium barbital, J. Surfactants Deterg. 8(2005) 253-256; 
 
- 
			
                    [37]
                
			(c) Y.X. Guo, X.F. Yang, L.H. Hakuna, et al., A fast response highly selective probe for the detection of glutathione in human blood plasma, Sensors 12(2012) 5940-5950; 
 
- 
			
                    [38]
                
			(d) H.Y. Tian, J.H. Qian, H.Y. Bai, et al., Micelle-induced multiple performance improvement of fluorescent probes for H2S detection, Anal. Chim. Acta 768(2013) 136-142; 
 
- 
			
                    [39]
                
			(e) L. Song, H.Y. Tian, X.L. Pei, et al., Colorimetric and fluorescent detection of GSH with the assistance of CTAB micelles, RSC Adv. 5(2015) 59056-59061. 
 
- 
			
                    [40]
                
			[11] L.M. Ma, J.H. Qian, H.Y. Tian, et al., A colorimetric and fluorescent dual probe for specific detection of cysteine based on intramolecular nucleophilic aromatic substitution, Analyst 137(2012) 5046-5050. 
 
- 
			
                    [41]
                
			[12] (a) Y.Y. Chen, L.P. Si, J.J. Liu, et al., Study on π-π stacking interaction of aryl and alkyl meso-substituted corroles and theirs copper complexes, Comput. Appl. Chem. 26(2009) 1587-1592; 
 
- 
			
                    [42]
                
			(b) B.N. Li, Y.K. Wang, D.M. Du, J.X. Xu, Notable and obvious ketene substituentdependent effect of temperature on the stereoselectivity in the Staudinger reaction, J. Org. Chem. 72(2007) 990-997. 
 
 
- 
			
                    [1]
                
			
- 
	                	
						  
- 
	                	
- 
				[1]
				Yudi Cheng , Xiao Wang , Jiao Chen , Zihan Zhang , Jiadong Ou , Mengyao She , Fulin Chen , Jianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156 
- 
				[2]
				Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862 
- 
				[3]
				Tao Liu , Xuwei Han , Xueyi Sun , Weijie Zhang , Ke Gao , Runan Min , Yuting Tian , Caixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170 
- 
				[4]
				Qian Pang , Fangjun Huo , Yongkang Yue , Caixia Yin . ONOO− and viscosity dual-response fluorescent probe for arthritis imaging in vivo. Chinese Chemical Letters, 2025, 36(9): 110713-. doi: 10.1016/j.cclet.2024.110713 
- 
				[5]
				Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020 
- 
				[6]
				Fan Zheng , Runsha Xiao , Shuai Huang , Zhikang Chen , Chen Lai , Anyao Bi , Heying Yao , Xueping Feng , Zihua Chen , Wenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876 
- 
				[7]
				Zhixiao Xiong , Shanni Qiu , Yuyu Wang , Houna Duan , Yi Xiao , Yufang Xu , Weiping Zhu , Xuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002 
- 
				[8]
				Jiayu Zeng , Minhui Liu , Ting Yang , Jia Huang , Songjiao Li , Wanting Zhang , Dan Cheng , Longwei He , Jia Zhou . Two-dimensional design strategy to construct smart dual-responsive fluorescent probe for the precise tracking of ischemic stroke. Chinese Chemical Letters, 2025, 36(5): 110166-. doi: 10.1016/j.cclet.2024.110166 
- 
				[9]
				Xianzhu Luo , Feifei Yu , Rui Wang , Tian Su , Pan Luo , Pengfei Wen , Fabiao Yu . A near-infrared two-photon fluorescent probe for the detection of HClO in inflammatory and tumor-bearing mice. Chinese Chemical Letters, 2025, 36(7): 110531-. doi: 10.1016/j.cclet.2024.110531 
- 
				[10]
				Xinyi Zhao , Yuai Duan , Zihan Liu , Hua Geng , Yaping Li , Zhongfeng Li , Tianyu Han . Mapping sweat pores for biometric identification based on a donor-acceptor hydrophilic fluorescent probe. Chinese Chemical Letters, 2025, 36(8): 110617-. doi: 10.1016/j.cclet.2024.110617 
- 
				[11]
				Chuanfeng Fan , Jian Gao , Yingkai Gao , Xintong Yang , Gaoning Li , Xiaochun Wang , Fei Li , Jin Zhou , Haifeng Yu , Yi Huang , Jin Chen , Yingying Shan , Li Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838 
- 
				[12]
				Lei Shen , Hongmei Liu , Ming Jin , Jinchao Zhang , Caixia Yin , Shuxiang Wang , Yutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572 
- 
				[13]
				Han-Min Wang , Yan-Chen Li , Lu-Lu Sun , Ming-Ye Tang , Jia Liu , Jiahao Cai , Lei Dong , Jia Li , Yi Zang , Hai-Hao Han , Xiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603 
- 
				[14]
				Wenping Dong , Mo Ma , Jingkang Li , Lanlan Xu , Dejiang Gao , Pinyi Ma , Daqian Song . Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chinese Chemical Letters, 2025, 36(5): 110147-. doi: 10.1016/j.cclet.2024.110147 
- 
				[15]
				Meiling Zhao , Yao Lu , Yutao Zhang , Haoyun Xue , Zhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105 
- 
				[16]
				Jiajia Lv , Jie Gao , Hongyu Li , Zeli Yuan , Nan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940 
- 
				[17]
				Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750 
- 
				[18]
				Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663 
- 
				[19]
				Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117 
- 
				[20]
				Hui Zhang , Rong Feng , Wanyi Yu , Hongbei Wei , Tianhong Wu , Peng Zhang , Wenhai Bian , Xin Li , Di Gao , Guojun Weng , Zhe Yang , Tony D. James , Xiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528 
 
- 
				[1]
				
Metrics
- PDF Downloads(0)
- Abstract views(1049)
- HTML views(53)
 
  Login In
Login In
 
	                     
	                     
	                     
	                     DownLoad:
DownLoad: