Citation: Zhi-Lin Cheng, Shuai Han. Preparation of a novel composite electrode based on N-doped TiO2-coated NaY zeolite membrane and its photoelectrocatalytic performance[J]. Chinese Chemical Letters, ;2016, 27(03): 467-470. doi: 10.1016/j.cclet.2015.12.010 shu

Preparation of a novel composite electrode based on N-doped TiO2-coated NaY zeolite membrane and its photoelectrocatalytic performance

  • Corresponding author: Zhi-Lin Cheng, 
  • Received Date: 17 July 2015
    Available Online: 15 November 2015

    Fund Project: We are grateful to supported by the Talent Introduction Fund of Yangzhou University (2012) (2012)Six Big Peak Talent in Jiangsu Province (No.2014-XCL-013). (No.BE2014613)

  • For the first time the preparation of the N-doped TiO2-coated NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) as an electrode material for photoelectrocatalysis has been achieved and reported. The XRD, SEM, UV-vis and XPS techniques were used to characterize the structure of the N-doped TiO2/NaY zeolite membrane. The results verified that the surface of the N-doped TiO2/NaY zeolite membrane was coated by TiO2 nanoparticles of ca. 20 nmsize and exhibited a distinct red-shift in the UV-vis spectra compared to N-doped TiO2. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane electrode was evaluated by phenol degradation. The results revealed it is a promising novel electrode material for application of photoelectrocatalysis in the removal of organic contaminants in waste water.
  • 加载中
    1. [1]

      [1] E.R.A. Ferraz, G.A.R. Oliveira, M.D. Grando, et al., Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 from aqueous chloride samples, J. Environ. Manage. 124(2013) 108-114.

    2. [2]

      [2] S. Gupta, V. Subramanian, Encapsulating Bi2Ti2O7(BTO) with Reduced Graphene Oxide (RGO):an effective strategy to enhance photocatalytic and photoelectrocatalytic activity of BTO, ACS Appl. Mater. (Ⅰ)nterfaces 6(2014) 18597-18608.

    3. [3]

      [3] P.A. Carneiro, M.E. Osugi, C.S. Fugivara, et al., Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution, Chemosphere 59(2005) 431-439.

    4. [4]

      [4] D.Y. Wu, M.C. Long, Realizing visible-light-induced self-cleaning property of cotton through coating N-TiO2 film and loading Ag(Ⅰ) particles, ACS Appl. Mater. (Ⅰ)nterfaces 3(2011) 4770-4774.

    5. [5]

      [5] C.X. Lei, Z.D. Feng, H. Zhou, Visible-light-driven photogenerated cathodic protection of stainless steel by liquid-phase-deposited TiO2 films, Electrochim. Acta 68(2012) 134-140.

    6. [6]

      [6] J.R. Huang, X. Tan, T. Yu, L. Zhao, W.L. Hu, Enhanced photoelectrocatalytic and photoelectrochemical properties by high-reactive TiO2/SrTiO3 hetero-structured nanotubes with dominant {001} facet of anatase TiO2, Electrochim. Acta 146(2014) 278-287.

    7. [7]

      [7] M. Zhang, C.Z. Yang, W.H. Pu, et al., Liquid phase deposition of WO3/TiO2 heterojunction films with high photoelectrocatalytic activity under visible light irradiation, Electrochim. Acta 148(2014) 180-186.

    8. [8]

      [8] L. Wu, F. Li, Y.Y. Xu, et al., Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation, Appl. Catal., B:Environ. 164(2015) 217-224.

    9. [9]

      [9] K. Yang, W.H. Pu, Y.B. Tan, et al., Enhanced photoelectrocatalytic activity of Crdoped TiO2 nanotubes modified with polyaniline, Mater. Sci. Semicond. Process. 27(2014) 777-784.

    10. [10]

      [10] G.S. Wu, J.P. Wang, D.F. Thomas, A.C. Chen, Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity, Langmuir 24(2008) 3503-3509.

    11. [11]

      [11] N. Lu, X. Quan, J.Y. Li, et al., Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability, J. Phys. Chem. C 111(2007) 11836-11842.

    12. [12]

      [12] X.T. Hong, Z.P. Wang, W.M. Cai, et al., Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide, Chem. Mater. 17(2005) 1548-1552.

    13. [13]

      [13] K.L. Yeung, W. Han, Zeolites and mesoporous materials in fuel cell applications, Catal. Today 236(2014) 182-205.

    14. [14]

      [14] A.Y. Shan, T.(Ⅰ).M. Ghazi, S.A. Rashid, (Ⅰ)mmobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis:a review, Appl. Catal. A:Gen. 389(2010) 1-8.

    15. [15]

      [15] E.C. Su, B.S. Huang, C.C. Liu, M.Y. Wey, Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2-activated carbon photocatalysts, Renewable Energy 75(2015) 266-271.

    16. [16]

      [16] S. Basha, C. Barr, D. Keane, et al., On the adsorption/photodegradation of amoxicillin in aqueous solutions by an integrated photocatalytic adsorbent ((Ⅰ)PCA):experimental studies and kinetics analysis, Photochem. Photobiol. Sci. 10(2011) 1014-1022.

    17. [17]

      [17] C.Y. Kuo, C.Y. Pai, C.C. He, C.J. Lin, C.M. Cheng, Photodegradation of aqueous reactive dye using TiO2/zeolite admixtures in a continuous flow reactor, Water Sci. Technol. 65(2012) 1963-1969.

    18. [18]

      [18] C. Wang, H.S. Shi, Y. Li, Synthesis and characteristics of natural zeolite supported Fe3+-TiO2 photocatalysts, Appl. Surf. Sci. 257(2011) 6873-6877.

    19. [19]

      [19] F.F. Li, Y.S. Jiang, L.X. Yu, et al., Surface effect of natural zeolite (clinoptilolite) on the photocatalytic activity of TiO2, Appl. Surf. Sci. 252(2005) 1410-1416.

    20. [20]

      [20] S. Liu, M. Lim, R. Amal, TiO2-loaded natural zeolite:rapid humic acid adsorption and effective photocatalytic regeneration, Chem. Eng. Sci. 105(2014) 46-52.

    21. [21]

      [21] D. Kanakaraju, J. Kockler, C.A. Motti, B.D. Glass, M. Oelgemöller, Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin, Appl. Catal., B:Environ. 166-167(2015) 45-55.

    22. [22]

      [22] M. Abrishamkar, F.B. Kahkeshi, Synthesis and characterization of nano-ZSM-5 zeolite and its application for electrocatalytic oxidation of formaldehyde over modified carbon paste electrode with ion exchanged synthesized zeolite in alkaline media, Microporous Mesoporous Mater. 167(2013) 51-54.

    23. [23]

      [23] T. Rohani, M. Ali Taher, A new method for electrocatalytic oxidation of ascorbic acid at the Cu(Ⅱ) zeolite-modified electrode, Talanta 78(2009) 743-747.

    24. [24]

      [24] M. Mazloum Arkadani, Z. Akrami, H. Kazemian, H.R. Zare, Electrocatalytic characteristics of uric acid oxidation at graphite-zeolite-modified electrode doped with iron(Ⅲ), J. Electroanal. Chem. 586(2006) 31-38.

    25. [25]

      [25] A. Nezamzadeh-Ejhieh, H.S. Hashemi, Voltammetric determination of cysteine using carbon paste electrode modified with Co(Ⅱ)-Y zeolite, Talanta 88(2012) 201-208.

    26. [26]

      [26] Z.L. Cheng, H.Q. Lin, Z.S. Chao, H.L. Wan, NaY zeolite membrane prepared by using pre-absorbed nanosized NaY zeolite synthesized by microwave heating, Chem. J. Chin. Univ. 24(2003) 1857-1861.

    27. [27]

      [27] D. Papoulis, S. Komarneni, A. Nikolopoulou, et al., Palygorskite-and halloysite-TiO2 nanocomposites:synthesis and photocatalytic activity, Appl. Clay Sci. 50(2010) 118-124.

    28. [28]

      [28] Y.X. Jiang, S.G. Sun, S.P. Chen, N. Ding, Enhancement of (Ⅰ)R absorption of CO adsorbed on palladium-loading zeolite thin film electrode, Chem. J. Chin. Univ. 22(2011) 1850-1863.

    29. [29]

      [29] S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, J. Phys. Chem. B 108(2004) 19384-19387.

    30. [30]

      [30] O. Diwald, T.L. Thompson, T. Zubkov, et al., Photochemical activity of nitrogendoped rutile TiO2(110) in visible light, J. Phys. Chem. B 108(2004) 6004-6008.

  • 加载中
    1. [1]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    2. [2]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    6. [6]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    7. [7]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    8. [8]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    9. [9]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    10. [10]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    11. [11]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    12. [12]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    13. [13]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    14. [14]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    15. [15]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    16. [16]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    17. [17]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    18. [18]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    19. [19]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    20. [20]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

Metrics
  • PDF Downloads(0)
  • Abstract views(509)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return