Citation: Yong-Tao Gao, Lin-Man Zhao, Fu-Qing Pang, Xiu-Juan Qi, Jing-Lun Huang, Fu-Xue Chen. Synthesis and properties of energetic salts based on 3-nitro-5-nitroimino-1,2,4-oxadiazole[J]. Chinese Chemical Letters, ;2016, 27(03): 433-436. doi: 10.1016/j.cclet.2015.12.008 shu

Synthesis and properties of energetic salts based on 3-nitro-5-nitroimino-1,2,4-oxadiazole

  • Corresponding author: Fu-Xue Chen, 
  • Received Date: 23 September 2015
    Available Online: 20 November 2015

    Fund Project:

  • A series of 3-nitro-5-nitroimino-1,2,4-oxadiazole-based energetic salts were synthesized from 3-nitro-5-nitroimino-1,2,4-oxadiazole anion and nitrogen-rich cations. They were fully characterized by IR, elemental analysis and NMR spectroscopy. The structure of triaminoguanidinium salt (1-e) was confirmed by single crystal X-ray diffraction. All salts showed good thermal stability with decomposed temperature ranging from 155℃ to 258℃, and positive heats of formation from 226.0 kJ/mol to 554.1 kJ/mol. Thus, the theoretic detonation pressure was predicted from 28.70 GPa to 37.60 GPa and velocities from 8526 m/s to 9354 m/s. Among them, guanidinium salt (1-c) exhibited both high decomposition temperature (258℃) and detonation velocity (9319 m/s).
  • 加载中
    1. [1]

      [1] D.M. Badgujar, M.B. Talawar, S.N. Asthana, P.P. Mahulikar, Advances in science and technology of modern energetic materials:an overview, J. Hazard. Mater. 151(2008) 289-305.

    2. [2]

      [2] Q.H. Zhang, J.M. Shreeve, Energetic ionic liquids as explosives and propellant fuels:a new journey of ionic liquid chemistry, Chem. Rev. 114(2014) 110527-110574.

    3. [3]

      [3] M.B. Talawar, R. Sivabalan, T. Mukundan, et al., Environmentally compatible next generation green energetic materials (GEMs), J. Hazard. Mater. 161(2009) 589-607.

    4. [4]

      [4] P.F. Pagoria, G.S. Lee, A.R. Mitchell, R.D. Schmidt, A review of energetic materials synthesis, Thermochim. Acta 384(2002) 187-204.

    5. [5]

      [5] J.P. Agrawal, Recent trends in high-energy materials, Prog. Energy Combust. Sci. 24(1998) 1-30.

    6. [6]

      [6] H.X. Gao, J.M. Shreeve, The many faces of FOX-7:a precursor to high-performance energetic materials, Angew. Chem. (Ⅰ)nt. Ed. 54(2015) 6335-6338.

    7. [7]

      [7] X. Yin, J.T. Wu, X. Jin, et al., Nitrogen-rich salts of 1-aminotetrazol-5-one:oxygencontaining insensitive energetic materials with high thermal stability, RSC Adv. 5(2015) 60005-60014.

    8. [8]

      [8] (a) L. Liu, Y.Q. Zhang, Z.M. Li, S.J. Zhang, Nitrogen-rich energetic 4-R-5-nitro-1,2,3-triazolate salts (R=-CH3,-NH2,-N3,-NO2 and-NHNO2) as high performance energetic materials, J. Mater. Chem. A 3(2015) 14768-14778;

    9. [9]

      (b) C.L. He, J.H. Zhang, D.A. Parrish, J.M. Shreeve, 5-Chloro-3,5-dinitropyrazole:a precursor for promising insensitive energetic compounds, J. Mater. Chem. A 1(2013) 2863-2868;

    10. [10]

      (c) Y.C. Li, Q. Cai, S.H. Li, et al., 1,1'-Azobis-1,2,3-triazole:a high-nitrogen compound with stable N8 structure and photochromism, J. Am. Chem. Soc. 132(2010) 12172-12173.

    11. [11]

      [9] (a) P.M. Jadhav, S. Radhakrishnan, V.D. Ghule, R.K. Pandey, Energetic salts from nitroformate ion, J. Mol. Model. 21(2015) 1-5;

    12. [12]

      (b) H. Wei, C.L. He, J.H. Zhang, J.M. Shreeve, Combination of 1, 2,4-oxadiazole and 1,2,5-oxadiazole moieties for the generation of high performance energetic materials, Angew. Chem. (Ⅰ)nt. Ed. 54(2015) 9367-9371;

    13. [13]

      (c) M.A. Kettner, T.M. Klapçtke, T.G. Witkowski, F. von Hundling, Synthesis, characterisation and crystal structures of two bi-oxadiazole derivatives featuring the trifluoromethyl group, Chem. Eur. J. 21(2015) 4238-4241.

    14. [14]

      [10] (a) Z.D. Fu, R. Su, Y.Wang, et al., Synthesis and characterization of energetic 3-nitro-1,2,4-oxadiazoles, Chem. Eur. J. 18(2012) 1886-1889;

    15. [15]

      (b) Z.D. Fu, C. He, F.X. Chen, Synthesis and characteristics of a novel, high-nitrogen, heat-resistant, insensitive material (NOG2Tz), J. Mater. Chem. 22(2012) 60-63;

    16. [16]

      (c) Z.D. Fu, Y. Wang, L. Yang, et al., Synthesis and characteristics of novel, high nitrogen 1,2,4-oxadiazoles, RSC Adv. 4(2014) 11859-11861;

    17. [17]

      (d) A.B. Sheremetev, The chemistry of furazans fused to six-and seven-membered heterocycles with one heteroatom, Russ. Chem. Rev. 68(1999) 137-148.

    18. [18]

      [11] (a) Z.D. Fu, Y. Wang, F.X. Chen, Comparison of thermal performance of new energetic materials NONHT and NONsHT, Acta Armamentarii 34(2012) 235-239;

    19. [19]

      (b) Y. Wang, Z.D. Fu, F.X. Chen, Effect of new energetic materials NOG2TZ to HMX thermal decomposition behavior, Chin. J. Energy Mater. 22(2014) 22-25;

    20. [20]

      (c) Z.D. Fu, Y. Wang, F.X. Chen, The thermal decomposition behavior of new energetic materials NOG, Chin. J. Energy Mater. 20(2012) 583-586.

    21. [21]

      [12] Y. K. Wu, G. Y. Chen, Z. M. Zhou, H. S. Dong, A method of prediction compound crystal density, CN 101957300 A (2009).

    22. [22]

      [13] H.X. Gao, J.M. Shreeve, Azole-based energetic salts, Chem. Rev. 111(2011) 7377-7436.

    23. [23]

      [14] M.J. Frisch, Gaussian 09, Gaussian, (Ⅰ)nc, Wallingford, CT, 2009.

    24. [24]

      [15] R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, NY, 1989.

    25. [25]

      [16] H.D. Jenkins, D. Tudeal, L. Glasser, Lattice potential energy estimation for complex ionic salts from density measurements, (Ⅰ)norg. Chem. 41(2002) 2364-2367.

  • 加载中
    1. [1]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    2. [2]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    3. [3]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    4. [4]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    5. [5]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    6. [6]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    7. [7]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    8. [8]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    9. [9]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    10. [10]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    11. [11]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    12. [12]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    13. [13]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    14. [14]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    15. [15]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    16. [16]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    17. [17]

      Wei ZhouXi ChenLin LuXian-Rong SongMu-Jia LuoQiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902

    18. [18]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    19. [19]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    20. [20]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

Metrics
  • PDF Downloads(0)
  • Abstract views(489)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return