Citation: Gao-Nan Li, Cheng-Wei Gao, Hui Xie, Hao-Hua Chen, Dong Liu, Wei Sun, Guang-Ying Chen, Zhi-Gang Niu. New luminescent cyclometalated iridium(III) complexes containing fluorinated phenylisoquinoline-based ligands:Synthesis, structures, photophysical properties and DFT calculations[J]. Chinese Chemical Letters, ;2016, 27(03): 428-432. doi: 10.1016/j.cclet.2015.12.007 shu

New luminescent cyclometalated iridium(III) complexes containing fluorinated phenylisoquinoline-based ligands:Synthesis, structures, photophysical properties and DFT calculations

  • Corresponding author: Zhi-Gang Niu, 
  • Received Date: 21 October 2015
    Available Online: 11 November 2015

    Fund Project: This work was supported by the National Natural Science Foundation of China (No.21501037) (No.21501037) the Natural Science Foundation of Hainan Province (No.20152017) (No.20152017)

  • Two new fluorinated phenylisoquinoline-based iridium(Ⅲ) complexes,[Ir(f2piq)2(bipy)] [PF6] (3a) and[Ir(fmpiq)2(bipy)] [PF6] (3b) (f2piq=1-(2,4-difluorophenyl)isoquinoline, fmpiq=1-(4-fluoro-2-methylphenyl) isoquinoline, bipy=2,2'-bipyridine), have been synthesized and fully characterized. Single crystal X-ray diffraction study has been undertaken on complexes 3a and 3b, which show that each adopts the distorted octahedral coordination geometry with the cis-C,C' and trans-N,N' configuration. The photoluminescence spectra of 3a and 3b exhibit yellow and orange emission maxima at 584 and 600 nm, respectively. The frontier molecular orbital diagrams and the lowest-energy electronic transitions of 3a-3b have been calculated with density functional theory (DFT) and time-dependent DFT (TD-DFT). The absorption and emission spectra of complex 3b is red-shifted relative to those of complex 3a, as a consequence of the nature of the methyl group.
  • 加载中
    1. [1]

      [1] M.A. Baldo, D.F. O'Brien, Y. You, et al., Highly emission from electroluminescent phosphorescent organic devices, Nature 395(1998) 151-154.

    2. [2]

      [2] M.A. Baldo, S. Lamansky, P.E. Burrows, et al., Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett. 75(1999) 4-6.

    3. [3]

      [3] M.A. Baldo, C. Adachi, S.R. Forrest, et al., High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electrontransporting materials, Appl. Phys. Lett. 77(2000) 904-906.

    4. [4]

      [4] S. Lamansky, P. Djurovich, D. Murphy, et al., Synthesis and characterization of phosphorescent cyclometalated iridium complexes, (Ⅰ)norg. Chem. 40(2001) 1704-1711.

    5. [5]

      [5] N.G. Park, M.Y. Kwak, B.O. Kim, et al. Jpn. J. Appl. Phys. 41(2002) 1523-1526.

    6. [6]

      [6] A.B. Tamayo, B.D. Alleyne, P.(Ⅰ). Djurovich, et al., Synthesis and characterization of facial and meridional tris-cyclometalated iridium(Ⅲ) complexes, J. Am. Chem. Soc. 125(2003) 7377-7387.

    7. [7]

      [7] W.Y. Wong, C.L. Ho, Z.Q. Gao, et al., Multifunctional iridium complexes based on carbazole modules as highly efficient electrophosphores, Angew. Chem. (Ⅰ)nt. Ed. 45(2006) 7800-7803.

    8. [8]

      [8] H.H. Chou, C.H. Cheng, A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs, Adv. Mater. 22(2010) 2468-2471.

    9. [9]

      [9] Y.T. Tao, Q.A. Wang, C.L. Yang, et al., Multifunctional triphenylamine/oxadiazole hybrid as host and exciton-blocking material:high efficiency green phosphorescent OLEDs using easily available and common materials, Adv. Funct. Mater. 20(2010) 2923-2929.

    10. [10]

      [10] D. Sykes, (Ⅰ).S. Tidmarsh, A. Barbieri, et al., d→f energy transfer in a series of (Ⅰ)r(Ⅲ)/Eu(Ⅲ) dyads:energy-transfer mechanisms and white-light emission, (Ⅰ)norg. Chem. 50(2011) 11323-11339.

    11. [11]

      [11] Y. Zheng, A.S. Batsanov, R.M. Edkins, et al., Thermally induced defluorination during a mer to fac transformation of a blue-green phosphorescent cyclometalated iridium(Ⅲ) complex, (Ⅰ)norg. Chem. 51(2012) 290-297.

    12. [12]

      [12] C.L. Ho, W.Y. Wong, Q. Wang, et al., A multifunctional iridium-carbazolyl orange phosphor for high-performance two-element WOLED exploiting excitonmanaged fluorescence/phosphorescence, Adv. Funct. Mater. 18(2008) 928-937.

    13. [13]

      [13] F. Babudri, G.M. Farinola, F. Naso, et al., Fluorinated materials for electronic and optoelectronic applications:the role of the fluorine atom, Chem. Commun. (2007) 1003-1022.

    14. [14]

      [14] Z.G. Niu, D. Liu, J. Zuo, et al., Four new cyclometalated phenylisoquinoline-based (Ⅰ)r(Ⅲ) complexes:syntheses, structures, properties and DFT calculations, (Ⅰ)norg. Chem. Commun. 43(2014) 146-150.

    15. [15]

      [15] Agilent Technologies (Ⅰ)nc., CrysAlisPro Version 1.171.36.21, Agilent Technologies (Ⅰ)nc., Santa Clara, CA, USA, 2012.

    16. [16]

      [16] G.M. Sheldrick, A short history of shelx, Acta Crystallogr. Sect. A:Found. Crystallogr. 64(2008) 112-122.

    17. [17]

      [17] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, et al., Olex2:a complete structure solution, refinement and analysis program, J. Appl. Cryst. 42(2009) 339-341.

    18. [18]

      [18] A.L. Spek, Single-crystal structure validation with the program platon, J. Appl. Crystallogr. 36(2003) 7-13.

    19. [19]

      [19] P.V.D. Sluis, A.L. Spek, Bypass:an effective method for the refinement of crystal structures containing disordered solvent regions, Acta Crystallogr. Sect. A:Found. Crystallogr. 46(1990) 194-201.

    20. [20]

      [20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09, Revision A. 01, Gaussian, (Ⅰ)nc, Wallingford, CT, 2009.

    21. [21]

      [21] C. Lee, W. Yang, R.G. Parr, Development of the colle-salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B:Condens. Matter 37(1988) 785-789.

    22. [22]

      [22] B. Miehlich, A. Savin, H. Stoll, et al., Results obtained with the correlation energy density functionals of becke and lee, yang and parr, Chem. Phys. Lett. 157(1989) 200-206.

    23. [23]

      [23] A.D. Becke, Density-functional thermochemistry. Ⅲ. The role of exact exchange, J. Chem. Phys. 98(1993) 5648-5652.

    24. [24]

      [24] M. Cossi, N. Rega, G. Scalmani, et al., Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model, J. Comput. Chem. 24(2003) 669-681.

    25. [25]

      [25] J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev. 105(2005) 2999-3093.

    26. [26]

      [26] A. Juris, V. Balzani, F. Barigelletti, et al., Ru(Ⅱ) polypyridine complexes:photophysics, photochemistry, electrochemistry, and chemiluminescence, Coord. Chem. Rev. 84(1988) 85-227.

    27. [27]

      [27] M. Frank, M. Nieger, F. Vögtle, et al., Dinuclear Ru and/or Os complexes of bis, (Ⅰ)norg. Chim. Acta. 242(1996) 281-291.

    28. [28]

      [28] K.A. King, P.J. Spellane, R.J. Watts, Excited-state properties of a triply orthometalated iridium(Ⅲ) complex, J. Am. Chem. Soc. 107(1985) 1431-1432.

    29. [29]

      [29] S. Kammer, (Ⅰ). Starke, A. Pietrucha, et al., 1,12-diazaperylene and 2,11-dialkylated-1,12, Dalton Trans. 41(2012) 10219-10227.

    30. [30]

      [30] M. Bandini, M. Bianchi, G. Valenti, et al., Electrochemiluminescent functionalizable cyclometalated thiophene-based iridium(Ⅲ) complexes, (Ⅰ)norg. Chem. 49(2010) 1439-1448.

    31. [31]

      [31] S.K. Leung, K.Y. Kwok, K.Y. Zhang, et al., Design of luminescent biotinylation reagents derived from cyclometalated iridium(Ⅲ) and rhodium(Ⅲ) bis(pyridylbenzaldehyde) complexes, (Ⅰ)norg. Chem. 49(2010) 4984-4995.

    32. [32]

      [32] T. Hofbeck, H. Yersin, The triplet state of fac-(Ⅰ)r(ppy)3, (Ⅰ)norg. Chem. 49(2010) 9290-9299.

    33. [33]

      [33] Q.L. Xu, C.C. Wang, T.Y. Li, et al., Syntheses, photoluminescence, and electroluminescence of a series of iridium complexes with trifluoromethyl-substituted 2-phenylpyridine as the main ligands and tetraphenylimidodiphosphinate as the ancillary ligand, (Ⅰ)norg. Chem. 52(2013) 4916-4925.

    34. [34]

      [34] M. Tavasli, T.N. Moore, Y.H. Zheng, et al., Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(Ⅲ) complexes of carbazole-based ligands:synthetic, photophysical, computational and high efficiency OLED studies, J. Mater. Chem. 22(2012) 6419-6428.

    35. [35]

      [35] K.R.J. Thomas, M. Velusamy, J.T. Lin, et al., Efficient red-emitting cyclometalated iridium(Ⅲ) complexes containing lepidine-based ligands, (Ⅰ)norg. Chem. 44(2005) 5677-5685.

    36. [36]

      [36] M.S. Lowry, W.R. Hudson, R.A. Pascal Jr., et al., Accelerated luminophore discovery through combinatorial synthesis, J. Am. Chem. Soc. 126(2004) 14129-14135.

    37. [37]

      [37] Q. Zhao, S.J. Liu, M. Shi, et al., Series of new cationic iridium(Ⅲ) complexes with tunable emission wavelength and excited state properties:structures, theoretical calculations, and photophysical and electrochemical properties, (Ⅰ)norg. Chem. 45(2006) 6152-6160.

  • 加载中
    1. [1]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    2. [2]

      Xuan Zhu Lin Zhou Xiao-Yun Huang Yan-Ling Luo Xin Deng Xin Yan Yan-Juan Wang Yan Qin Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272

    3. [3]

      Xiao-Tong Sun Hao-Fei Ni Yi Zhang Da-Wei Fu . Hybrid perovskite shows temperature-dependent photoluminescence and dielectric response triggered by halogen substitution. Chinese Journal of Structural Chemistry, 2024, 43(6): 100212-100212. doi: 10.1016/j.cjsc.2024.100212

    4. [4]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    5. [5]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    6. [6]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    7. [7]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    8. [8]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    9. [9]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    10. [10]

      Xinyi CaoYucheng JinHailong WangXu DingXiaolin LiuBaoqiu YuXiaoning ZhanJianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201

    11. [11]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    12. [12]

      Bohan ZhangBingzhe WangGuichuan XingZikang TangSongnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358

    13. [13]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    14. [14]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    15. [15]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    16. [16]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    17. [17]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    18. [18]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    19. [19]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    20. [20]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

Metrics
  • PDF Downloads(0)
  • Abstract views(520)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return