Citation: Yu Wang, Wen-Shi Wu, Miao-Ling Huang. Heterometal-organic frameworks:Three novel copper(II)-lanthanide(III) 15-metallacrown-5 complexes based on pyrazinohydroxamic acid as new multiple-binding pentagonal platform[J]. Chinese Chemical Letters, ;2016, 27(03): 423-427. doi: 10.1016/j.cclet.2015.12.006 shu

Heterometal-organic frameworks:Three novel copper(II)-lanthanide(III) 15-metallacrown-5 complexes based on pyrazinohydroxamic acid as new multiple-binding pentagonal platform

  • Corresponding author: Wen-Shi Wu, 
  • Received Date: 21 October 2015
    Available Online: 12 November 2015

  • Reactions of copper(Ⅱ) sulfate or copper(Ⅱ) perchlorate, samarium(Ⅲ), erbium(Ⅲ) or neodymium(Ⅲ) nitrate (5/1 equiv.) with pyrazinohydroxamic acid (H2Pyzha) in H2O/MeOH led to three new heterobimetallic 15-metallacrown-5 complexes. In a MeOH/H2O solution, when adding inorganic salts, the ligands exist as protonated metallacrowns. In the solid state, their structures are more complicated as confirmed by X-ray analysis:metallacrown[Sm (H2O)3 {Cu(pyzha)}5 (H2O)2 (MeOH) (HSO4)2]·(H2O)2 (HSO4) (1);[Nd(H2O)2 (MeOH) {Cu(pyzha)}5 (ClO4)2 (H2O)5(NO3)] (2);[Eu(H2O)2 (MeOH) {Cu(pyzha)}5 (ClO4)2 (H2O)5 (NO3)] (3). The differentiation of atomic and ionic radii between the encapsulated lanthanide(Ⅲ) could be used to control the bowl-shape distortion of the metallacrowns from the planar geometry. The complex 1 clearly exhibits fluorescence behavior of samarium(Ⅲ), while 2 and 3 show that of copper(Ⅱ) and ligand.
  • 加载中
    1. [1]

      [1] Z.L. Wu, J. Dong, W.Y. Ni, et al., Unique chiral interpenetrating d-f heterometallic MOFs as luminescent sensors, (Ⅰ)norg. Chem. 54(2015) 5266-5272.

    2. [2]

      [2] H.C. Aspinall, Chiral lanthanide complexes:coordination chemistry and applications, Chem. Rev. 102(2002) 1807-1850.

    3. [3]

      [3] Q.B. Yuan, S.L. Zhou, X.C. Zhu, et al., Heterometallic rare-earth metal complexes with imino-functionalized 8-hydroxyquinolyl ligands:synthesis, characterization and catalytic activity towards hydrophosphinylation of trans-β-nitroalkene, New J. Chem. 39(2015) 7626-7632.

    4. [4]

      [4] J.J. (Ⅰ)nanaga, H. Furuno, T. Hayano, Asymmetric catalysis and amplification with chiral lanthanide complexes, Chem. Rev. 102(2002) 2211-2226.

    5. [5]

      [5] A.J. Stemmler, J.W. Kampf, M.L. Kirk, et al., The preparation, characterization, and magnetism of copper 15-Metallacrown-5 lanthanide complexes, (Ⅰ)norg. Chem. 38(1999) 2807-2817.

    6. [6]

      [6] A. Svitova, K. Braun, A.A. Popov, et al., A platform for specific delivery of lanthanide-scandium mixed-metal cluster fullerenes into target cells, Chem. Open 1(2012) 207-210.

    7. [7]

      [7] C.M. Zaleski, E.C. Depperman, J.W. Kampf, et al., Synthesis, structure, and magnetic properties of a large lanthanide-transition-metal single-molecule magnet, Angew. Chem. (Ⅰ)nt. Ed. 43(2004) 3912-3914.

    8. [8]

      [8] Y.F. Zhou, F.L. Jiang, D.Q. Yuan, et al., Copper complex cation templated gadolinium(Ⅲ)-isophthalate frameworks, Angew. Chem. (Ⅰ)nt. Ed. 43(2004) 5665-5668.

    9. [9]

      [9] J.J. Zhang, S.M. Hu, S.C. Xiang, et al., Syntheses, structures, and properties of highnuclear 3d-4f clusters with amino acid as ligand:{Gd6Cu24} {Tb6Cu26}, and {(Ln6Cu24)2Cu} (Ln=Sm, Gd), (Ⅰ)norg. Chem. 45(2006) 7173-7181.

    10. [10]

      [10] A.D. Cutland, R.G. Malkani, J.W. Kampf, V.L. Pecoraro, Lanthanide 15-metalla-crown-5 complexes form nitrate-selective chiral cavities, Angew. Chem. (Ⅰ)nt. Ed. 39(2000) 2689-2692.

    11. [11]

      [11] T.N. Parac-Vogt, A. Pacco, P. Nockemann, et al., Relaxometric study of copper 15-metallacrown-5 gadolinium complexes derived from α-aminohydroxamic acids, Chem. Eur. J. 12(2005) 204-210.

    12. [12]

      [12] C.S. Lim, J. Jankolovits, P. Zhao, et al., Gd(Ⅲ)[15-metallacrown-5] recognition of chiral alpha-amino acid analogues, (Ⅰ)norg. Chem. 50(2011) 4832-4841.

    13. [13]

      [13] G. Mezei, C.M. Zaleski, V.L. Pecoraro, Structural and functional evolution of metallacrowns, Chem. Rev. 107(2007) 4933-5033.

    14. [14]

      [14] B.S. Kushner, H. Dalalian, J.L. Sanjurjo, et al., Experimental chemotherapy of tuberculosis(Ⅱ). The synthesis of pyrazinamides and related compounds, J. Am. Chem. Soc. 74(1952) 3617-3621.

    15. [15]

      [15] G.M. Sheldrick, SADABS:Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Göttingen, Germany, 1996.

    16. [16]

      [16] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann, OLEX2:a complete structur solution, refinement and analysis program, J. Appl. Crystallogr. 42(2009) 339.

    17. [17]

      [17] G.M. Sheldrick, SHELXS-97, Structure Solving Program and Program for the Refinement of Crystal Structures from Diffraction Data, University of Göttingen:Göttingen, Germany, 1997.

    18. [18]

      [18] V.L. Pecoraro, J.J. Bodwin, A.D. Cutland, Formation of chiral solids via a molecular building block approach, J. Solid State Chem. 152(2000) 68-77.

    19. [19]

      [19] E. Kusrini, M.(Ⅰ). Saleh, R. Adnan, et al., Ternary complexes of neodymium(Ⅲ) and samarium(Ⅲ) picrate triethylene glycol:structural, spectroscopic, and photoluminescent properties, J. (Ⅰ)nclusion Phenom. Macrocyclic Chem. 74(2012) 425-436.

    20. [20]

      [20] J.J. Zhang, T.L. Sheng, S.Q. Xia, et al., Syntheses and characterizations of a series of novel Ln6Cu24 clusters with amino acids as ligands, (Ⅰ)norg. Chem. 43(2004) 5472-5478.

    21. [21]

      [21] P.M. Guha, H. Phan, J.S. Kinyon, et al., Structurally diverse copper(Ⅱ) complexes of polyaza ligands containing 1,2,3-triazoles:site selectivity and magnetic properties, (Ⅰ)norg. Chem. 51(2012) 3465-3477.

    22. [22]

      [22] C. Janiak, A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands, J. Chem. Soc., Dalton Trans.21(2000) 3885-3896.

    23. [23]

      [23] M. Sakamoto, K. Manseki, H. Okawa, D-f heteronuclear complexes:synthesis, structures and physicochemical aspects, Coord. Chem. Rev. 381(2001) 379-414.

  • 加载中
    1. [1]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    2. [2]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    3. [3]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    4. [4]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    5. [5]

      Long TANGYaxin BIANLuyuan CHENXiangyang HOUXiao WANGJijiang WANG . Syntheses, structures, and properties of three coordination polymers based on 5-ethylpyridine-2,3-dicarboxylic acid and N-containing ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1975-1985. doi: 10.11862/CJIC.20240180

    6. [6]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    7. [7]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    8. [8]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    9. [9]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    10. [10]

      Shiyu PanBo CaoDeling YuanTifeng JiaoQingrui ZhangShoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185

    11. [11]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    12. [12]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    13. [13]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    14. [14]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    15. [15]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    16. [16]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    17. [17]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    18. [18]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    19. [19]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    20. [20]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

Metrics
  • PDF Downloads(0)
  • Abstract views(583)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return