Citation: Manisha R. Bhosle, Lalit D. Khillare, Sambhaji T. Dhumal, Ramrao A. Mane. A facile synthesis of 6-amino-2H, 4H-pyrano[2,3-c]pyrazole-5-carbonitriles in deep eutectic solvent[J]. Chinese Chemical Letters, ;2016, 27(03): 370-374. doi: 10.1016/j.cclet.2015.12.005 shu

A facile synthesis of 6-amino-2H, 4H-pyrano[2,3-c]pyrazole-5-carbonitriles in deep eutectic solvent

  • Corresponding author: Ramrao A. Mane, 
  • Received Date: 7 September 2015
    Available Online: 26 October 2015

  • A convenient synthesis of 6-amino-2H,4H-pyrano[2,3-c]pyrazole-5-carbonitriles has been accomplished by one pot four-component cyclocondensation of aromatic aldehydes (1a-o) malanonitrile (2), ethyl acetoacetate (3), and hydrazine hydrate (4) in freshly prepared deep eutectic solvent, DES (choline chloride:urea). This protocol has afforded corresponding pyrano[2,3-c]pyrazoles in shorter reaction time with high yields, and it avoids the use of typical toxic catalysts and solvents.
  • 加载中
    1. [1]

      [1] (a) A. Matin, N. Gavande, M.S. Kim, et al., 7-Hydroxy-benzopyran-4-one derivatives:a novel pharmacophore of peroxisome proliferator-activated receptor α and-γ (PPAR α and γ) dual agonists, J. Med. Chem. 52(2009) 6835-6850;

    2. [2]

      (b) E.M. Priego, J.V.F.D. Kuenzel, A.P. (Ⅰ)Jzerman, M.J. Camarasa, M.J. Perez, Pyrido[2,1-f]purine-2,4-dione derivatives as a novel class of highly potent human A3 adenosine receptor antagonists, J. Med. Chem. 45(2002) 3337-3344;

    3. [3]

      (c) S.A. Galal, A.S.A. El-All, M.M. Abdallah, H.(Ⅰ). El-Diwani, Synthesis of potent antitumor and antiviral benzofuran derivatives, Bioorg. Med. Chem. Lett. 19(2009) 2420-2428.

    4. [4]

      [2] J.D. Hepworth, Pyrans and fused pyrans:synthesis and applications, in:A.R. Katrizky, C.W. Rees (Eds.), Comprehensive Heterocyclic Chemistry, vol. 3, Pergamon, Oxford, 1984, p. 737.

    5. [5]

      [3] E.S. El-Tamany, F.A. El-Shahed, B.H. Mohamed, Synthesis and biological activity of some pyrazole derivatives, J. Serb. Chem. Soc. 64(1999) 9-18.

    6. [6]

      [4] (a) K. Konishi, T. Kuragano, A. Nohara, N.G. Nippon, Fungicidal activity of 2-aminochromone-3-carboxamides, J. Pestic. Sci. 15(1990) 241-244;

    7. [7]

      (b) S.Y. Liao, L. Qian, T.F. Miao, Y. Shen, K.C. Zheng, 3D-QSAR studies of substituted 4-aryl/heteroaryl-4h-chromenes as apoptosis inducers using comfa and comsia, J. Theor. Comput. Chem. 8(2009) 143-148;

    8. [8]

      (c) W. Kemnitzer, S. Jiang, Y.Wang, et al.,Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based HTS assay. Part 5:Modifications of the 2-and 3-positions, Bioorg. Med. Chem. Lett. 18(2008) 603-607;

    9. [9]

      (d) W. Kemnitzer, J.Drewe, S. Jiang, et al., Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell-and caspase-based high throughput screening assay. 4. Structure-activity relationships of N-alkyl substituted pyrrole fused at the 7,8-positions, J. Med. Chem. 51(2008) 417-423.

    10. [10]

      [5] N. Martin, C. Pascual, C. Seoane, J.L. Soto, The use of some activated nitriles in heterocyclic syntheses, Heterocycles 26(1987) 2811-2816.

    11. [11]

      [6] A.V. Stachulski, N.G. Berry, A.C.L. Low, et al., (Ⅰ)dentification of isoflavone derivatives as effective anticryptosporidial agents in vitro and in vivo, J. Med. Chem. 49(2006) 1450-1454.

    12. [12]

      [7] (a) W.P. Smith, L.S. Sollis, D.P. Howes, et al., Dihydropyrancarboxamides related to zanamivir:a new series of inhibitors of influenza virus sialidases. 1. discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidinoand 4-amino-4H-pyran-6-carboxamides, J. Med. Chem. 41(1998) 787-797;

    13. [13]

      (b) K. Mazaahir, S. Shilpi, R.K. Khalilur, S.T. Sharanjit, Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents, Bioorg. Med. Chem. Lett. 15(2005) 4295-4298.

    14. [14]

      [8] J.L. Wang, D. Liu, Z.J. Zheng, et al., Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells, Proc. Natl. Acad. Sci. U.S.A. 97(2000) 7124-7129.

    15. [15]

      [9] (a) M.E.A. Zaki, H.A. Saliman, O.A. Hickal, A.E. Rashad, Pyrazolopyranopyrimidines as a class of anti-inflammatory agents, J. Biosci. 61(2006) 1-5;

    16. [16]

      (b) C.K. Sheng, J.H. Li, N. Hideo, Studies on heterocyclic compounds. 6 Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives, J. Med. Chem. 27(1984) 539-544.

    17. [17]

      [10] N. Foloppe, L.M. Fisher, R. Howes, et al., (Ⅰ)dentification of chemically diverse Chk1 inhibitors by receptor-based virtual screening, Bioorg. Med. Chem. 14(2006) 4792-4802.

    18. [18]

      [11] Y.M. Litvinov, L.A. Rodinovskaya, A.M. Shestopalov, A new convenient four-component synthesis of 6-amino-2H, 4H-pyrano[2,3-c]pyrazole-5-carbonitriles and onepot synthesis of 6'-amino-5-cyano-1,2-dihydrospiro-[(3H)-indole-3,4'-(4'H)-pyrano[2,3-c]pyrazol]-2-ones, Russ. Chem. Bull. (Ⅰ)nt. Ed. 58(2009) 2362-2368.

    19. [19]

      [12] K. Kanagaraj, K. Pitchumani, Solvent-free multicomponent synthesis of pyranopyrazoles:per-6-amino-β-cyclodextrin as a remarkable catalyst and host, Tetrahedron Lett. 51(2010) 3312-3316.

    20. [20]

      [13] M.B.M. Reddy, V.P. Jayashankara, M.A. Pasha, Glycine-catalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction, Synth. Commun. 40(2010) 2930-2934.

    21. [21]

      [14] H. Mecadon, M.R. Rohman, M. Rajbangshi, B. Myrboh, γ-Alumina as a recyclable catalyst for the four-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in aqueous medium, Tetrahedron Lett. 52(2011) 2523-2525.

    22. [22]

      [15] H. Mecadon, M.R. Rohman, (Ⅰ). Kharbangar, et al.,L-Proline as an efficient catalyst for the multi-component synthesis of 6-amino-4-alkyl/aryl-3-methyl-2,4-dihydropyrano[2,3-c]pyrazole-5-carbonitriles in water, Tetrahedron Lett. 52(2011) 3228-3231.

    23. [23]

      [16] M. Babaie, H. Sheibani, Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction, Arabian J. Chem. 4(2011) 159-162.

    24. [24]

      [17] S.D. Samant, N.R. Patil, S.W. Kshirsagar, Mg-Al Hydrotalcite as a first heterogeneous basic catalyst for the synthesis of 4H-pyrano[2,3-c]pyrazoles through a four-component reaction, Synth. Commun. 41(2011) 1320-1325.

    25. [25]

      [18] F. Lehmann, S.L. Holm, M.S. Laufer, Three-component combinatorial synthesis of novel dihydropyrano[2,3-c]pyrazoles, J. Comb. Chem. 10(2008) 364-367.

    26. [26]

      [19] M.M. Heravi, A. Ghods, F. Derikvand, K. Bakhtiari, F.F. Bammoharram, H14[NaP5W30O110] catalyzed one-pot three-component synthesis of dihydropyrano[2,3-c]pyrazole and pyrano[2,3-d]pyrimidine derivatives, J. (Ⅰ)ran Chem. Soc. 7(2010) 615-620.

    27. [27]

      [20] H. Kiyani, H.A. Samimi, F. Ghorbani, S. Esmaieli, One-pot, four-component synthesis of pyrano[2,3-c]pyrazoles catalyzed by sodium benzoate in aqueous medium, Curr. Chem. Lett. 2(2013) 197-206.

    28. [28]

      [21] M. Bihani, P.P. Bora, G. Bez, H. Askari, Amberlyst a21 catalyzed chromatographyfree method for multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles in ethanol, ACS Sustainable Chem. Eng. 1(2013) 440-447.

    29. [29]

      [22] G. Tacconi, G. Gatti, G. Desimoni, V. Messori, A new route to 4H-pyrano[2,3-c]pyrazoles,(Eine neue synthese für 4H-pyrano[2,3-c]pyrazole), J. Prakt. Chem. 322(1980) 831-834.

    30. [30]

      [23] (Ⅰ).T. Horvath, Solvents from nature, Green Chem. 10(2008) 1024-1028.

    31. [31]

      [24] R. Kumar, P. Chaudhary, S. Nimesh, R. Chandra, Polyethylene glycol as a non-ionic liquid solvent for Michael addition reaction of amines to conjugated alkenes, Green Chem. 8(2006) 356-358.

    32. [32]

      [25] (a) A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic acids:versatile alternatives to ionic liquids, J. Am. Chem. Soc. 126(2004) 9142-9147;

    33. [33]

      (b) A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun. (2003) 70-71;

    34. [34]

      (c) E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114(2014) 11060-11082.

    35. [35]

      [26] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, (Ⅰ)onic liquids and their use as solvents, PCT (Ⅰ)nt. Appl. WO 0226701, 2002.

    36. [36]

      [27] Y.A. Sonawane, S.B. Phadtare, B.N. Borse, A.R. Jagtap, G.S. Shankarling, Synthesis of diphenylamine-based novel fluorescent styryl colorants by Knoevenagel condensation using a conventional method, biocatalyst, and beep eutectic solvent, Org. Lett. 12(2010) 1456-1459.

    37. [37]

      [28] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Quaternary ammonium zinc-or tin-containing ionic liquids:water insensitive, recyclable catalysts for Diels-Alder reactions, Green Chem. 4(2002) 24-26.

    38. [38]

      [29] R.C. Morales, V. Tambyrajah, P.R. Jenkins, D.L. Davies, A.P. Abbott, The regiospecific Fischer indole reaction in choline chloride 2ZnCl2 with product isolation by direct sublimation from the ionic liquid, Chem. Commun. (2004) 158-159.

    39. [39]

      [30] P.M. Pawar, K.J. Jarag, G.S. Shankarling, Environmentally benign and energy efficient methodology for condensation:an interesting facet to the classical Perkin reaction, Green Chem. 13(2011) 2130-2134.

    40. [40]

      [31] A.P. Abbott, T.J. Bell, S. Handa, B. Stoddart, O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid, Green Chem. 7(2005) 705-707.

    41. [41]

      [32] Z. Chen, W. Zhu, Z. Zheng, X. Zou, One-pot α-nucleophilic fluorination of acetophenones in a deep eutectic solvent, J. Fluorine Chem. 131(2010) 340-344.

    42. [42]

      [33] (a) S.B. Phadtare, G.S. Shankarling, Halogenation reactions in biodegradable solvent:efficient bromination of substituted 1-aminoanthra-9,10-quinone in deep eutectic solvent (choline chloride:urea), Green Chem. 12(2010) 458-462;

    43. [43]

      (b) A.S. Singh, S.S. Shendage, J.M. Nagarkar, Choline chloride based deep eutectic solvent as an efficient solvent for the benzylation of phenols, Tetrahedron Lett. 55(2014) 7243-7246.

    44. [44]

      [34] (a) M.R. Bhosle, J.R. Mali, A.A. Mulay, R.A. Mane, Polyethylene glycol mediated one-pot three-component synthesis of new 4-thiazolidinones, Heteroat. Chem. 23(2012) 166-170;

    45. [45]

      (b) M.R. Bhosle, A.R. Deshmukh, S. Pal, A.K. Srivastava, R.A. Mane, Synthesis of new thiazolylmethoxyphenyl pyrimidines and antihyperglycemic evaluation of the pyrimidines, analogues isoxazolines and pyrazolines, Bioorg. Med. Chem. Lett. 25(2015) 2442-2446;

    46. [46]

      (c) L.D. Khillare, M.R. Bhosle, A.R. Deshmukh, R.A. Mane, Synthesis and antiinflammatory evaluation of new pyrazoles bearing biodynamic thiazole and thiazolidinone scaffolds, Med. Chem. Res. 24(2015) 1380-1386.

    47. [47]

      [35] (a) Y. Peng, G. Song, R. Dou, Surface cleaning under combined microwave and ultrasound irradiation:flash synthesis of 4H-pyrano[2,3-c]pyrazoles in aqueous media, Green Chem. 8(2006) 573-575;

    48. [48]

      (b) P.V. Shinde, J.B. Gujar, B.B. Shingate, M.S. Shingare, silica in water:a potentially valuable reaction medium for the synthesis of pyrano[2,3-c]pyrazoles, Bull. Korean Chem. Soc. 33(4) (2012) 1345-1348;

    49. [49]

      (c) A. Siddekha, A. Nizam, M.A. Pasha, An efficient and simple approach for the synthesis of pyranopyrazoles using imidazole (catalytic) in aqueous medium, and the vibrational spectroscopic studies on 6-amino-4-(4'-methoxyphenyl)-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c]pyrazole using density functional theory, Spectrochim. Acta A:Mol. Biomol. Spectrosc. 81(2011) 431-440;

    50. [50]

      (d) M. Reddy, M.A. Pasha, One-pot, multicomponent synthesis of 4H-pyrano[2,3-c]pyrazoles in water at 25℃, (Ⅰ)ndian J. Chem. 51(2012) 537-541;

    51. [51]

      (e) M. Reddy, V.P. Jayashan Kara, M.A. Pasha, Glycine-catalyzed efficient synthesis of pyranopyrazoles via one-pot multicomponent reaction, Synth. Commun. 40(2010) 2930-2934;

    52. [52]

      (f) R.Y. Guo, Z.M. An, L.P. Mo, et al., Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives, Tetrahedron 69(2013) 9931-9938;

    53. [53]

      (g) Y.A. Tayade, S.A. Padvi, Y.B. Wagh, D.S. Dalal, β-Cyclodextrin as a supramolecular catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4'-pyrano[2,3-F]pyrazole] in aqueous medium, Tetrahedron Lett. 56(2015) 2441-2447.

  • 加载中
    1. [1]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    2. [2]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    3. [3]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    4. [4]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    5. [5]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    6. [6]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    7. [7]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    8. [8]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    9. [9]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    10. [10]

      Shicheng DongJun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214

    11. [11]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    12. [12]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    13. [13]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    14. [14]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    15. [15]

      Linjie JuZhongxi HuangQian ShenChan FuShuanghe LiWenjie DuanChenfeng XuWeizhen AnZhiqiang ZhaiJifu WeiChangmin YuGuoren Zhou . Glutathione depletion based Pt(Ⅳ) hybrid mesoporous organosilica delivery system to conquer cisplatin chemoresistance: A “one stone three birds” strategy. Chinese Chemical Letters, 2024, 35(10): 109450-. doi: 10.1016/j.cclet.2023.109450

    16. [16]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    17. [17]

      Zhirong YangShan WangMing JiangGengchen LiLong LiFangzhi PengZhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518

Metrics
  • PDF Downloads(0)
  • Abstract views(536)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return