Citation: Yong-Fei Xu, Mo-Zhen Wang, Qi-Chao Wu, Xiao Zhou, Xue-Wu Ge. Synthesis and morphology control of raspberry-like poly(ethylene terephthalate)/polyacrylonitrile microspheres[J]. Chinese Chemical Letters, ;2016, 27(02): 195-199. doi: 10.1016/j.cclet.2015.12.004 shu

Synthesis and morphology control of raspberry-like poly(ethylene terephthalate)/polyacrylonitrile microspheres

  • Corresponding author: Mo-Zhen Wang, 
  • Received Date: 7 August 2015
    Available Online: 16 November 2015

    Fund Project:

  • The fabrication of raspberry-like poly(ethylene terephthalate)/polyacrylonitrile (PET/PAN) microspheres by γ-ray radiation-induced polymerization of acrylonitrile on micron-sized PET microspheres were first reported in this work. A PET emulsion was firstly prepared by dispersing a PET solution with 1,1,2,2-tetrachloroethane/phenol mixture as the solvent into an aqueous solution of sodium dodecyl sulfate. Then, PET microspheres were formed by precipitating the PET emulsion droplets from ethanol. The influence of the PET solvent and the weight ratio of ethanol to PET emulsion on the morphology of the PET microspheres had been investigated. After the surface of the prepared PET microspheres was grafted with poly(acrylic acid), the grafting polymerization of AN also had been successfully initiated by γ-ray radiation to form PAN microspheres with a size of about 100 nm on the PET microspheres. This work provides a new method to fabricate micron-sized PET microspheres, and further expands the functionalization of PET and its application fields.
  • 加载中
    1. [1]

      [1] L.Z. Xie, Y.Y. Xie, Q.H. Wu, et al., Effect of poly(acrylic acid)-modified poly(ethylene terephthalate) on improving the integrated mechanical properties of poly(ethylene terephthalate)/elastomer blend, Ind. Eng. Chem. Res. 54 (2015) 4748-4755.

    2. [2]

      [2] D.R. Johnson, F. Tian, M.J. Roman, E.A. Decker, J.M. Goddard, Development of ironchelating poly(ethylene terephthalate) packaging for inhibiting lipid oxidation in oil-in-water emulsions, J. Agric. Food Chem. 63 (2015) 5055-5060.

    3. [3]

      [3] J.N. Wang, L. Xu, C. Cheng, Y. Meng, A.M. Li, Preparation of new chelating fiber with waste pet as adsorbent for fast removal of Cu2+ and Ni2+ from water: kinetic and equilibrium adsorption studies, Chem. Eng. J. 193-194 (2012) 31-38.

    4. [4]

      [4] Y. Meng, J.N. Wang, L. Xu, A.M. Li, Fast removal of Pb2+ from water using new chelating fiber modified with acylamino and amino groups, Chin. Chem. Lett. 23 (2012) 496-499.

    5. [5]

      [5] L. Xu, J.N. Wang, Y. Meng, A.M. Li, Fast removal of heavy metal ions and phytic acids from water using new modified chelating fiber, Chin. Chem. Lett. 23 (2012) 105-108.

    6. [6]

      [6] N. Rahman, N. Sato, S. Yoshioka, et al., Selective Cu(Ⅱ) adsorption from aqueous solutions including Cu(Ⅱ), Co(Ⅱ), and Ni(Ⅱ) by modified acrylic acid grafted PET film, ISRN Polym. Sci. (2013) 1-9, Article ID:536314.

    7. [7]

      [7] S.H. Othman, M.A. Sohsah, M.M. Ghoneim, The effects of hazardous ions adsorption on the morphological and chemical properties of reactive cloth filter, Radiat. Phys. Chem. 78 (2009) 976-985.

    8. [8]

      [8] Y.F. Xu, Y.L. Wang, M.Z. Wang, et al., A new approach of synthesis and morphological control of poly(ethylene terephthalate)-g-polyacrylonitrile composite film with a porous surface, Radiat. Phys. Chem. 106 (2015) 261-267.

    9. [9]

      [9] J.R. Whinfield, J.T. Dickson, Improvements relating to the manufacture of highly polymeric substances, British Patent, 1941 578079.

    10. [10]

      [10] G.W. Burton, C.P. O'Farrell, Preparation of artificial latexes, J. Elastomers Plast. 9 (1977) 94-101.

    11. [11]

      [11] Y. Zhang, H.F. Chan, K.W. Leong, Advanced materials and processing for drug delivery: the past and the future, Adv. Drug Delivery Rev. 65 (2013) 104-120.

    12. [12]

      [12] L.J. Teng, W.Y. Nie, Y.F. Zhou, L.Y. Song, P.P. Chen, Synthesis and characterization of star-shaped PLLA with sorbitol as core and its microspheres application in controlled drug release, J. Appl. Polym. Sci. 132 (2015) 422131-422137.

    13. [13]

      [13] J.P. Rao, K.E. Geckeler, Polymer nanoparticles: preparation techniques and sizecontrol parameters, Prog. Polym. Sci. 36 (2011) 887-913.

    14. [14]

      [14] C.J. Ke, T.Y. Su, H.L. Chen, et al., Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments, Angew. Chem. Int. Ed. 50 (2011) 8086-8089.

    15. [15]

      [15] J. Fickert, D. Schaeffel, K. Koynov, K. Landfester, D. Crespy, Silica nanocapsules for redox-responsive delivery, Colloid Polym. Sci. 292 (2014) 251-255.

    16. [16]

      [16] R.H. Staff, P. Rupper, I. Lieberwirth, K. Landfester, D. Crespy, Phase behavior of binary mixtures of block copolymers and a non-solvent in miniemulsion droplets as single and double nanoconfinement, Soft Matter 7 (2011) 10219-10226.

    17. [17]

      [17] J. Fickert, C. Wohnhaas, A. Turshatov, K. Landfester, D. Crespy, Copolymers structures tailored for the preparation of nanocapsules, Macromolecules 46 (2013) 573-579.

    18. [18]

      [18] T. Yamagami, Y. Kitayama, M. Okubo, Preparation of stimuli-responsive "mushroom-like" Janus polymer particles as particulate surfactant by site-selective surface-initiated AGET ATRP in aqueous dispersed systems, Langmuir 30 (2014) 7823-7832.

    19. [19]

      [19] B. Gupta, N. Muzyyan, S. Saxena, N. Grover, S. Alam, Preparation of ion exchange membranes by radiation grafting of acrylic acid on FEP films, Radiat. Phys. Chem. 77 (2008) 42-48.

    20. [20]

      [20] D. Campbell, K. Araki, D.T. Turner, ESR study of free radicals formed by γ-irradiation of poly(ethylene terephthalate), J. Polym. Sci., A: Polym. Chem. 4 (1966) 2597-2606.

    21. [21]

      [21] J. Brandrup, E.H. Immergut, E.A. Grulke, A. Abe, D.R. Bloch, Polymer Handbook, fourth ed., John Wiley & Sons, Inc, New York, NY, 2000.

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    3. [3]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    4. [4]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    5. [5]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    6. [6]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    7. [7]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    8. [8]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    9. [9]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    10. [10]

      Xueyan ZhangJicong ChenSongren HanShiyan DongHuan ZhangYuhong ManJie YangYe BiLesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668

    11. [11]

      Zhefei HuJingwen LiaoJiawen ZhouLulu ZhaoYanjuan LiuYuefei ZhangWei ChenSheng Tang . A new green approach to synthesizing MIP-202@porous silica microspheres for positional isomer/enantiomer/hydrophilic separation. Chinese Chemical Letters, 2025, 36(1): 109985-. doi: 10.1016/j.cclet.2024.109985

    12. [12]

      Jiayao Li Xinru Peng Shiwei Yin Changwei Wang Yirong Mo . Metastability of π-π stacking between the closed-shell ions of like charges. Chinese Journal of Structural Chemistry, 2024, 43(5): 100213-100213. doi: 10.1016/j.cjsc.2023.100213

    13. [13]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    14. [14]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    15. [15]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    16. [16]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

    17. [17]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    18. [18]

      Yiqian JiangZihan YangXiuru BiNan YaoPeiqing ZhaoXu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331

    19. [19]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    20. [20]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

Metrics
  • PDF Downloads(0)
  • Abstract views(643)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return