Citation: Bo Li, Xu-Zhuo Sun. Dimensional effects of organic anion templates in modulating the assembly of water clusters in cucurbit[6]uril supramolecular systems[J]. Chinese Chemical Letters, ;2016, 27(03): 417-422. doi: 10.1016/j.cclet.2015.12.003 shu

Dimensional effects of organic anion templates in modulating the assembly of water clusters in cucurbit[6]uril supramolecular systems

  • Corresponding author: Xu-Zhuo Sun, 
  • Received Date: 19 October 2015
    Available Online: 13 November 2015

    Fund Project:

  • Two new supramolecular architectures {(HC2O4)22-[C6H18N22+⊂C36H36N24O12]}·12H2O (1) and {(C6H5SO3)22-[C6H18N22+⊂C36H36N24O12]}·12H2O (2) were synthesized and characterized by singlecrystal X-ray diffraction, thermogravimetric analysis and X-ray powder diffraction. Compound 1 contains infinite two dimensional (2D) L18(8)14(8)8(4) type anion-water aggregates[(HC2O4)4 (H2O)22]4- and results in the construction of sandwich-like three dimensional (3D) networks. In compound 2, honeycomβ-like three dimensional (3D) networks are fabricated by one dimensional (1D) "W"-like T5(0)A2 type anion-water clusters[(C6H5SO3)(H2O)6]-. These results indicate that anionic groups play a crucial role in modulating the structures of water clusters with their spatial structure and binding sites. In these two structures, the majority of interactions are O...H and H...Hinteractions on the Hirshfeld surface, which means that hydrogen bonding and hydrophobic interactions are the dominate drive forces in forming these supramolecular systems.
  • 加载中
    1. [1]

      [1] D. Eisenberg, W. Kauzmannc, The Structure and Properties of Water, Oxford University Press, Oxford, UK, 1969.

    2. [2]

      [2] P. Ball, H2O:a Biography of Water, Weidenfeld & Nicolson, London, 1999.

    3. [3]

      [3] R. Ludwig, Water:from clusters to the bulk, Angew. Chem. (Ⅰ)nt. Ed. 40(2001) 1808-1827.

    4. [4]

      [4] N. Pugliano, R.J. Saykally, Measurement of quantum tunneling between chiral isomers of the cyclic water trimer, Science 257(1992) 1937-1940.

    5. [5]

      [5] U. Buck, F. Huisken, (Ⅰ)nfrared spectroscopy of size-selected water and methanol clusters, Chem. Rev. 100(2000) 3863-3890.

    6. [6]

      [6] T. Head-Gordon, G. Hura, Water structure from scattering experiments and simulation, Chem. Rev. 102(2002) 2651-2670.

    7. [7]

      [7] X.B. Wang, X. Yang, J.B. Nicholas, L.S. Wang, Bulk-like features in the photoemission spectra of hydrated doubly charged anion clusters, Science 294(2001) 1322-1325.

    8. [8]

      [8] W.H. Robertson, E.G. Diken, E.A. Price, J.W. Shin, M.A. Johnson, Spectroscopic determination of the OH-solvation shell in the OH-·(H2O)n clusters, Science 299(2003) 1367-1372.

    9. [9]

      [9] R. Custelcean, M.G. Gorbunova, A metal-organic framework functionalized with free carboxylic acid sites and its selective binding of a Cl(H2O)4- cluster, J. Am. Chem. Soc. 127(2005) 16362-16363.

    10. [10]

      [10] C.K. Lam, F. Xue, J.P. Zhang, X.M. Chen, T.C.W. Mak, Hydrogen-Bonded anionic rosette networks assembled with guanidinium and C3-symmetric oxoanion building blocks, J. Am. Chem. Soc. 127(2005) 11536-11537.

    11. [11]

      [11] A. Bakhoda, H.R. Khavasi, N. Safari, Discrete cubane-like bromide-water cluster, Cryst. Growth Des. 11(2011) 933-935.

    12. [12]

      [12] M.A. Hossain, P. Morehouse, D. Powell, K. Bowman-James, Tritopic (Cascade) and ditopic complexes of halides with an azacryptand, (Ⅰ)norg. Chem. 44(2005) 2143-2149.

    13. [13]

      [13] Q.H. Pan, R.J. Tian, S.J. Liu, et al.,[Co(NH3)6]2[Cd8(C2O4)11(H2O)4]·8H2O:a 5-connected sqp topological metal-organic framework co-templated by Co(NH3)63+ cation and (H2O)4 cluster, Chin. Chem. Lett. 24(2013) 861-865.

    14. [14]

      [14] G.G. Luo, S.H. Wu, Z.H. Pan, Z.J. Xiao, J.C. Dai, Formation of different polymeric water clusters via organic anionic templates:more carboxylate groups used, more water molecules gathered, (Ⅰ)norg. Chem. Comm. 39(2014) 34-38.

    15. [15]

      [15] G.G. Luo, H.B. Xiong, J.C. Dai, Syntheses, structural characterization, and properties of {[Cu(bpp)2(H2O)2] (tp)·7H2O} and {[Cu(bpp)2(H2O)](ip)·7H2O} complexes, New examples of the organic anionic template effect on induced assembly of water clusters (bpp=1, 3-Bis(4-pyridyl)propane, tp=Terephthalate, ip=(Ⅰ)sophthalate), Cryst. Growth Des. 11(2011) 507-515.

    16. [16]

      [16] S. Ganguly, R. Mondal, Coordination driven self-assembly in Co(Ⅱ) coordination polymers displaying unprecedented topology, water cluster, chirality, and spincanted magnetic behavior, Cryst. Growth Des. 15(2015) 2211-2222.

    17. [17]

      [17] (a) N. Nijem, P. Canepa, U. Kaipa, et al., Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework, J. Am. Chem. Soc. 135(2013) 12615-12626;

    18. [18]

      (b) H. (Ⅰ)sobe, S. Sato, E. Nakamura, Synthesis of disubstituted cucurbit[6] uril and its rotaxane derivative, Org. Lett. 4(2002) 1287-1289.

    19. [19]

      [18] (a) H. Yin, G. Hummer, J.C. Rasaiah, Metastable water clusters in the nonpolar cavities of the thermostable protein tetrabrachion, J. Am. Chem. Soc. 129(2007) 7369-7377;

    20. [20]

      (b) W.A. Freeman, W.L. Mock, N. Shih, Cucurbituril, J. Am. Chem. Soc. 103(1981) 7367-7368.

    21. [21]

      [19] (a) S. Parthasarathy, A. Altuve, S. Terzyan, et al., Accommodating a nonconservative internal mutation by water-mediated hydrogen bonding between β-sheet strands:a comparison of human and rat type B (Mitochondrial) cytochrome b5, Biochemistry 50(2011) 5544-5554;

    22. [22]

      (b) W.L. Mock, N. Shih, Organic ligand-receptor interactions between cucurbituril and alkylammonium ions, J. Am. Chem. Soc. 110(1988) 4706-4710.

    23. [23]

      [20] J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. (Ⅰ)saacs, The Cucurbit[n]uril family, Angew. Chem. (Ⅰ)nt. Ed. 44(2005) 4844-4870.

    24. [24]

      [21] E. Lee, J. Heo, K. Kim, A three-dimensional polyrotaxane network, Angew. Chem. (Ⅰ)nt. Ed. 39(2000) 2699-2701.

    25. [25]

      [22] E. Lee, J. Kim, J. Heo, D. Whang, K. Kim, A two-dimensional polyrotaxane with large cavities and channels:a novel approach to metal-organic open-frameworks by using supramolecular building blocks, Angew. Chem. (Ⅰ)nt. Ed. 40(2001) 399-402.

    26. [26]

      [23] S.G. Roh, K.M. Park, S. Sakamoto, K. Tamaguchi, K. Kim, Synthesis of a fivemembered molecular necklace:a 2+2 approach, Angew. Chem. (Ⅰ)nt. Ed. 38(1999) 637-641.

    27. [27]

      [24] K.M. Park, S.Y. Kim, J. Heo, et al., Designed self-assembly of molecular necklaces, J. Am. Chem. Soc. 124(2002) 2140-2147.

    28. [28]

      [25] M.V. Rekharsky, H. Yamamura, M. Kawai, et al., Sequential formation of a ternary complex among dihexylammonium, cucurbit[6] uril, and cyclodextrin with positive cooperativity, Org. Lett. 8(2006) 815-818.

    29. [29]

      [26] Y. Liu, X.Y. Li, H.Y. Zhang, C.J. Li, F. Ding, Cyclodextrin-driven movement of cucurbit[7] uril, J. Org. Chem. 72(2007) 3640-3645.

    30. [30]

      [27] X.Z. Sun, B. Li, J. Cao, et al., Pseudopolyrotaxanes of cucurbit[6] uril:a threedimensional network self-assembled by ClO4-(H2O)2- water clusters, Chin. J. Chem. 30(2012) 941-946.

    31. [31]

      [28] S. Angelos, Y.W. Yang, K. Patel, J.F. Stoddart, J.(Ⅰ). Zink, pH-Responsive supramolecular nanovalves based on cucurbit[6] uril, Angew. Chem. (Ⅰ)nt. Ed. 47(2008) 2222-2226.

    32. [32]

      [29] Y.W. Yang, Y.L. Sun, N. Song, Switchable host-guest systems on surfaces, Acc. Chem. Res. 47(2014) 1950-1960.

    33. [33]

      [30] X.Z. Sun, B. Li, Q.B. Zhou, et al., Pseudopolyrotaxanes of cucurbit[6] uril:a novel three-dimensional network self-assembled by (H2O)3 clusters and Br-(H2O)3 anion clusters, Cryst. Growth Des. 8(2008) 2970-2974.

    34. [34]

      [31] X.Z. Sun, B. Li, C.L. Xia, X.H. Zhou, H.B. Zhang, "Liquid-like" type (COO-)2(H2O)10 anion water clusters in three dimensional supramolecular structure of cucurbit[6] uril, CrystEngComm 14(2012) 8525-8529.

    35. [35]

      [32] L.J. Barbour, G.W. Orr, J.L. Atwood, An intermolecular (H2O)10 cluster in a solidstate supramolecular complex, Nature 393(1998) 671-673.

    36. [36]

      [33] R. Custalcean, C. Afloroaiei, M. Vlassa, M. Polverejan, Formation of extended tapes of cyclic water hexamers in an organic molecular crystal host, Angew. Chem. (Ⅰ)nt. Ed. 39(2000) 3094-3096.

    37. [37]

      [34] S.K. Seth, (Ⅰ). Saha, C. Estarellas, et al., Supramolecular self-assembly of M-(Ⅰ)DA complexes involving lone-pair·π interactions:crystal structures, hirshfeld surface analysis, and DFT calculations[H2(Ⅰ)DA=iminodiacetic acid.M=Cu(Ⅱ), Ni(Ⅱ)], Cryst. Growth Des. 11(2011) 3250-3265.

    38. [38]

      [35] M.A. Spackman, P.G. Byrom, A novel definition of a molecule in a crystal, Chem. Phys. Lett. 267(1997) 215-220.

    39. [39]

      [36] S.K. Wolff, D.J. Grimwood, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Crystal-Explorer 3.1, University of Western Australia, Perth, Australia, 2007.

  • 加载中
    1. [1]

      Hong-Jin LiaoZhu ZhuoQing LiYoshihito ShiotaJonathan P. HillKatsuhiko ArigaZi-Xiu LuLu-Yao LiuZi-Ang NanWei WangYou-Gui Huang . A new class of crystalline X-ray induced photochromic materials assembled from anion-directed folding of a flexible cation. Chinese Chemical Letters, 2024, 35(8): 109052-. doi: 10.1016/j.cclet.2023.109052

    2. [2]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    3. [3]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    4. [4]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    5. [5]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    6. [6]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    7. [7]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    8. [8]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    9. [9]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    10. [10]

      Yunjia Jiang Lingyao Wang Yuanbin Zhang . Anion pillared MOFs for challenging hydrocarbon separations. Chinese Journal of Structural Chemistry, 2024, 43(11): 100374-100374. doi: 10.1016/j.cjsc.2024.100374

    11. [11]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    12. [12]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    13. [13]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    14. [14]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    15. [15]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    16. [16]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    17. [17]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    18. [18]

      Ya-Wen Zhang Ming-Ming Gan Li-Ying Sun Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356

    19. [19]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    20. [20]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

Metrics
  • PDF Downloads(0)
  • Abstract views(524)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return