Citation: Wei Zhang, Xin-Yang Zhou, Qin-Ying Yu, Lu-Pei Du, Min-Yong Li. Discovery of naphthalimide conjugates as fluorescent probes for α1-adrenoceptors[J]. Chinese Chemical Letters, ;2016, 27(02): 185-189. doi: 10.1016/j.cclet.2015.12.002
-
α1-Adrenoceptors (α1-ARs), including at least three subtypes, α1A, α1B and α1D, which play essential roles in G protein-coupled receptors (GPCRs), can convey multiple pivotal extracellular signals in varied tissues and organs. In this research, a series of napthalimide-based small-molecule fluorescent probes (1a-1f) for α1-ARs, including two parts, a pharmacophore (quinazoline and phenylpiperazine) for α1-AR recognition and a fluorophore (naphthalimide) for visualization, were designed and synthesized successfully. These compounds display excellent fluorescence property and high affinity to receptors, which were used successfully for in vitro visualization of α1-adrenoceptors.
-
-
[1]
[1] C.M. Benning, N. Kyprianou, Quinazoline-derived α1-adrenoceptor antagonists induce prostate cancer cell apoptosis via an α1-adrenoceptor-independent action, Cancer Res. 62 (2002) 597-602.
-
[2]
[2] H.Y. Zhong, K.P. Minneman, α1-Adrenoceptor subtypes, Eur. J. Pharmacol. 375 (1999) 261-276.
-
[3]
[3] W. Li, L. Du, M. Li, Alkaloids and flavonoids as α1-adrenergic receptor antagonists, Curr. Med. Chem. 18 (2011) 4923-4932.
-
[4]
[4] T. Shi, R.J. Gaivin, D.F. McCune, M. Gupta, D.M. Perez, Dominance of the α1B-adrenergic receptor and its subcellular localization in human and TRAMP prostate cancer cell lines, J. Recept. Signal Transduct. Res. 27 (2007) 27-45.
-
[5]
[5] K.S. Jain, J.B. Bariwal, M.K. Kathiravan, et al., Recent advances in selective α1-adrenoreceptor antagonists as antihypertensive agents, Bioorg. Med. Chem. 16 (2008) 4759-4800.
-
[6]
[6] R.R. Ruffolo Jr., J.P. Hieble, Adrenoceptor pharmacology: urogenital applications, Eur. Urol. 36 (1999) 17-22.
-
[7]
[7] N. Kyprianou, C.M. Benning, Suppression of human prostate cancer cell growth by α1-adrenoceptor antagonists doxazosin and terazosin via induction of apoptosis, Cancer Res. 60 (2000) 4550-4555.
-
[8]
[8] L.Z. Chen, L.P. Du, M.Y. Li, The first inhibitor-based fluorescent imaging probe for aminopeptidase N, Drug Discov. Ther. 7 (2013) 124-125.
-
[9]
[9] Q. Sun, J. Li, W.N. Liu, et al., Non-peptide-based fluorogenic small-molecule probe for elastase, Anal. Chem. 85 (2013) 11304-11311.
-
[10]
[10] X. Wang, L. Cui, N.N. Zhou, et al., A highly selective and sensitive near-infrared fluorescence probe for arylamine N-acetyltransferase 2 in vitro and in vivo, Chem. Sci. 4 (2013) 2936-2940.
-
[11]
[11] M.Y. Li, H. Fang, L. Xia, Pharmacophore-based design, synthesis, biological evaluation, and 3D-QSAR studies of aryl-piperazines as α1-adrenoceptor antagonists, Bioorg. Med. Chem. Lett. 15 (2005) 3216-3219.
-
[12]
[12] L.P. Du, M.Y. Li, Modeling the interactions between α1-adrenergic receptors and their antagonists, Curr. Comput. Aided Drug Des. 6 (2010) 165-178.
-
[13]
[13] M.Y. Li, L. Xia, Rational design, synthesis, biologic evaluation, and structureactivity relationship studies of novel 1-indanone α1-adrenoceptor antagonists, Chem. Biol. Drug Des. 70 (2007) 461-464.
-
[14]
[14] W. Zhang, L.Z. Chen, Z. Ma, L.P. Du, M.Y. Li, Design, synthesis and biological evaluation of naphthalimide based fluorescent probes for α1-adrenergic receptors, Drug Discov. Ther. 8 (2014) 11-17.
-
[15]
[15] W. Zhang, Z. Ma, W.H. Li, et al., Discovery of quinazoline-based fluorescent probes to α1-adrenergic receptors, ACS Med. Chem. Lett. 6 (2015) 502-506.
-
[16]
[16] J. Handzlik, A.J. Bojarski, G. Satała, et al., SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT7 receptor ligands among phenylpiperazine hydantoin derivatives, Eur. J. Med. Chem. 78 (2014) 324-339.
-
[1]
-
-
[1]
Xu Qu , Pengzhao Wu , Kaixuan Duan , Guangwei Wang , Liang-Liang Gao , Yuan Guo , Jianjian Zhang , Donglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681
-
[2]
Linfang Wang , Jing Liu , Minghao Ren , Wei Guo . A highly sensitive fluorescent HClO probe for discrimination between cancerous and normal cells/tissues. Chinese Chemical Letters, 2024, 35(6): 108945-. doi: 10.1016/j.cclet.2023.108945
-
[3]
Chuan-Zhi Ni , Ruo-Ming Li , Fang-Qi Zhang , Qu-Ao-Wei Li , Yuan-Yuan Zhu , Jie Zeng , Shuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862
-
[4]
Boran Cheng , Lei Cao , Chen Li , Fang-Yi Huo , Qian-Fang Meng , Ganglin Tong , Xuan Wu , Lin-Lin Bu , Lang Rao , Shubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969
-
[5]
Zhixue Liu , Haiqi Chen , Lijuan Guo , Xinyao Sun , Zhi-Yuan Zhang , Junyi Chen , Ming Dong , Chunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666
-
[6]
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022
-
[7]
Jia-Mei Qin , Xue Li , Wei Lang , Fu-Hao Zhang , Qian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925
-
[8]
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
-
[9]
Jiajia Lv , Jie Gao , Hongyu Li , Zeli Yuan , Nan Dong . Rational design of hydroxytricyanopyrrole-based probes with high affinity and rapid visualization for amyloid-β aggregates in vitro and in vivo. Chinese Chemical Letters, 2024, 35(5): 108940-. doi: 10.1016/j.cclet.2023.108940
-
[10]
Lixian Fu , Yiyun Tan , Yue Ding , Weixia Qing , Yong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886
-
[11]
Haixian Ren , Yuting Du , Xiaojing Yang , Fangjun Huo , Le Zhang , Caixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867
-
[12]
Jiao Chen , Zihan Zhang , Guojin Sun , Yudi Cheng , Aihua Wu , Zefan Wang , Wenwen Jiang , Fulin Chen , Xiuying Xie , Jianli Li . Benzo[4,5]imidazo[1,2-a]pyrimidine-based structure-inherent targeting fluorescent sensor for imaging lysosomal viscosity and diagnosis of lysosomal storage disorders. Chinese Chemical Letters, 2024, 35(11): 110050-. doi: 10.1016/j.cclet.2024.110050
-
[13]
Ling-Ling Wu , Xiangchuan Meng , Qingyang Zhang , Xiaowan Han , Feiya Yang , Qinghua Wang , Hai-Yu Hu , Nianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663
-
[14]
Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020
-
[15]
Jianqiu Li , Yi Zhang , Songen Liu , Jie Niu , Rong Zhang , Yong Chen , Yu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645
-
[16]
Han-Min Wang , Yan-Chen Li , Lu-Lu Sun , Ming-Ye Tang , Jia Liu , Jiahao Cai , Lei Dong , Jia Li , Yi Zang , Hai-Hao Han , Xiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603
-
[17]
Beitong Zhu , Xiaorui Yang , Lirong Jiang , Tianhong Chen , Shuangfei Wang , Lintao Zeng . A portable and versatile fluorescent platform for high-throughput screening of toxic phosgene, diethyl chlorophosphate and volatile acyl chlorides. Chinese Chemical Letters, 2025, 36(1): 110222-. doi: 10.1016/j.cclet.2024.110222
-
[18]
Jingqi Xin , Shupeng Han , Meichen Zheng , Chenfeng Xu , Zhongxi Huang , Bin Wang , Changmin Yu , Feifei An , Yu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165
-
[19]
Biao Huang , Tao Tang , Fushou Liu , Shi-Hui Chen , Zhi-Ling Zhang , Mingxi Zhang , Ran Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694
-
[20]
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(674)
- HTML views(3)