Citation:
Jing-Wei Zheng, Lin Ma. Assessment of silver(I) complexes of salicylaldehyde derivatives—histidine Schiff base as novel α-glucosidase inhibitors[J]. Chinese Chemical Letters,
;2016, 27(02): 283-286.
doi:
10.1016/j.cclet.2015.11.015
-
In this study, a novel class of histidine Schiff base silver (I) complexes derived from salicylaldehyde, 1a-9a, was found to be an effective inhibitor of α-glucosidase. The results of this study showed that the newly synthesized complexes inhibited α-glucosidase through noncompetitive mechanisms; the IC50 values were ranging from 0.00431 µmol L-1 to 0.492 µmol L-1. The structure-activity relationship was established as well. These results demonstrated that compound 7a, 5-nitro salicylaldehyde Schiff base silver complex, is the most promising α-glucosidase inhibitor with the lowest IC50 value, which could be exploited as a drug candidate to alleviate postprandial hyperglycemia in the treatment of type Ⅱ diabetes mellitus. This research provided a catalyst-free, simple, and environmentally benign reaction to synthesize compounds using mechanochemistry.
-
-
-
[1]
[1] N. Asano, Glycosidase inhibitors: update and perspectives on practical use, Glycobiology 13 (2003) 93R-104R.
-
[2]
[2] World Health Organization, Diabetes, Available at (http://www.who.int/mediacentre/factsheets/fs312/en/index.html).
-
[3]
[3] O. Vahidi, K.E. Kwok, R.B. Gopaluni, L. Sun, Developing a physiological model for type Ⅱ diabetes mellitus, Biochem. Eng. J. 55 (2011) 7-16.
-
[4]
[4] A. Trapero, A. Llebaria, A prospect for pyrrolidine iminosugars as antidiabetic aglucosidase inhibitors, J. Med. Chem. 55 (2012) 10345-10346.
-
[5]
[5] H.W. Ryu, B.W. Lee, M.J. Curtis-Long, et al., Polyphenols from Broussonetia papyrifera displaying potent α-glucosidase inhibition, J. Agric. Food Chem. 58 (2010) 202-208.
-
[6]
[6] Y. Liu, L. Ma, W.H. Chem, et al., Binding mechanism and synergetic effects of xanthone derivatives as noncompetitive α-glucosidase inhibitors: a theoretical and experimental study, J. Phys. Chem. B 117 (2013) 13464-13471.
-
[7]
[7] S.S.Abdel-Meguid,B.W.Metcalf, T.J. Carr, et al.,Anorally bioavailableHIV-1 protease inhibitor containing an imidazole-derived peptide bond replacement: crystallographic and pharmacokinetic analysis, Biochemistry 33 (1994) 11672-11677.
-
[8]
[8] D. Dimova, P. Iyer, M. Vogt, et al., Assessing the target differentiation potential of imidazole-based protein kinase inhibitors, J. Med. Chem. 55 (2012) 11067-11071.
-
[9]
[9] A. Verras, I.D. Kuntz, P.R. Ortiz de Montellano, Computer-assisted design of selective imidazole inhibitors for cytochrome P450 enzymes, J. Med. Chem. 47 (2004) 3572-3579.
-
[10]
[10] Q.B. Su, S. Ioannidis, C. Chuaqui, et al., Discovery of 1-methyl-1H-imidazole derivatives as potent Jak2 inhibitiors, J. Med. Chem. 57 (2014) 144-158.
-
[11]
[11] R. Buchman, P.F. Heinstein, J.N. Wells, Imidazole derivatives as inhibitors of cyclic nucleotide phosphodiesterases, J. Med. Chem. 17 (1974) 1168-1173.
-
[12]
[12] S.W. He, Q.M. Hong, Z. Lai, et al., Discovery of a potent and selective DGAT1 inhibitor with a piperidinyl-oxy-cyclohexanecarboxylic acid moiety, Med. Chem. Lett. 5 (2014) 1082-1087.
-
[13]
[13] L.H. Abdel-Rahman, R.M. EI-Khatib, L.A.E. Nassr, A.M. Abu-Dief, F.E.D. Lashin, Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(Ⅱ) Schiff base amino acid complexes, Spectrochim. Acta A 111 (2013) 266-276.
-
[14]
[14] A. Varrot, M. Schülein, M. Pipelier, A. Vasella, G.J. Davies, Lateral protonation of a glycosidase inhibitor. Structure of the Bacillus agaradhaerens Cel5A in complex with a cellobiose-derived imidazole at 0. 97A˚ resolution, J. Am. Chem. Soc. 121 (1991) 2621-2622.
-
[15]
[15] A. Trzesowska-Kruszynska, Copper complex of glycine schiff base: in situ ligand synthesis, structure, spectral, and thermal properties, J. Mol. Struct. 1017 (2012) 72-78.
-
[16]
[16] N. Raman, A. Sakthivel, N. Pravin, Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid schiff base complexes: a comparative approach, Spectrochim. Acta A 125 (2014) 404-413.
-
[17]
[17] R. Ando, H. Inden, H. Sugino, et al., Spectroscopic characterization of amino acid and amino acid ester-Schiff-base complexes of oxovanadium and their catalysis in sulfide oxidation, Inorg. Chim. Acta 357 (2004) 1337-1344.
-
[18]
[18] R. Ganguly, B. Sreenivasulu, J.J. Vittal, Amino acid-containing reduced schiff bases as the building blocks for metallasupramolecular structures, Coordin. Chem. Rev. 252 (2008) 1027-1050.
-
[19]
[19] A. Pasini, L. Casella, Some aspects of the reactivity of amino acids coordinated to metal ions, J. Inorg. Nucl. Chem. 36 (1974) 2133-2144.
-
[20]
[20] J. Zuo, C.F. Bi, Y.H. Fan, et al., Cellular and computational studies of proteasome inhibition and apoptosis induction in human cancer cells by amino acid schiff base-copper complexes, J. Inorg. Biochem. 118 (2013) 83-93.
-
[21]
[21] L. Ronconi, P.J. Sadler, Using coordination chemistry to design new medicines, Coor. Chem. Rev. 251 (2007) 1633-1648.
-
[22]
[22] N.C. Kasuga, M. Sato, A. Amano, et al., Light-stable and antimicrobial active silver(I) complexes composed of triphenylphosphine and amino acid ligands: Synthesis, crystal structure, and antimicrobial activity of silver(I) complexes constructed with hard and soft donor atoms (n∞{[Ag(L)(PPh3)] 2} with L = α-ala- or asn- and n = 1 or 2), Inorg. Chim. Acta 361 (2008) 1267-1273.
-
[23]
[23] S.R. Moamen, I.M. El-Deen, K.I. Hassan, S. El-Ghool, Synthesis and spectroscopic studies of some transition metal complexes of a novel Schiff base ligands derived from 5-phenylazo-salicyladehyde and o-amino benzoic acid, Spectrochimi. Acta. A 65 (2006) 1208-1220.
-
[24]
[24] G. Pistia-Brueggeman, R.I. Hollingsworth, A preparation and screening strategy for glycosidase inhibitors, Tetrahedron 57 (2001) 8773-8778.
-
[25]
[25] J.S. Kim, Y.S. Kwon, Y.J. Sa, M.J. Kim, Isolation and identification of sea buckthorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect, J. Agric. Food Chem. 59 (2011) 138-144.
-
[26]
[26] G. Rothenberg, A.P. Downie, C.L. Raston, J.L. Scott, Understanding solid/solid organic reactions, J. Am. Chem. Soc. 123 (2001) 8701-8708.
-
[27]
[27] B.K. Singh, H.K. Rajour, A. Prakash, Synthesis, characterization and biological activity of transition metal complexes with Schiff bases derived from 2-nitrobenzaldehyde with glycine and methionine, Spectrochim. Acta A 94 (2012) 143-151.
-
[28]
[28] T.D. Heightman, A. Vasella, K.E. Tsitsanou, et al., Cooperative interactions of the catalytic nucleophile and the catalytic acid in the inhibition of β-glycosidases. Calculations and their validation by comparative kinetic and structural studies of the inhibition of glycogen phosphorylase b, Helv. Chim. Acta 81 (1998) 853-864.
-
[29]
[29] K. Bharatham, N. Bharatham, K.H. Park, K.W. Lee, Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of α-glucosidase inhibitors, J. Mol. Graphics Modell. 26 (2008) 1202-1212.
-
[30]
[30] N. Yar, M. Bajda, S. Shahzad, et al., Organocatalyzed solvent free an efficient novel synthesis of 2,4,5-trisubstituted imidazoles for α-glucosidase inhibition to treat diabetes, Bioorg. Chem. 58 (2015) 65-71.
-
[1]
-
-
-
[1]
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
-
[2]
Tao Yu , Vadim A. Soloshonok , Zhekai Xiao , Hong Liu , Jiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901
-
[3]
Xiaofen GUAN , Yating LIU , Jia LI , Yiwen HU , Haiyuan DING , Yuanjing SHI , Zhiqiang WANG , Wenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122
-
[4]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[5]
Ya-Wen Zhang , Ming-Ming Gan , Li-Ying Sun , Ying-Feng Han . Supramolecular dinuclear silver(I) and gold(I) tetracarbene metallacycles and fluorescence sensing of penicillamine. Chinese Journal of Structural Chemistry, 2024, 43(9): 100356-100356. doi: 10.1016/j.cjsc.2024.100356
-
[6]
Xiaofei NIU , Ke WANG , Fengyan SONG , Shuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057
-
[7]
Le Zhang , Hui-Yu Xie , Xin Li , Li-Ying Sun , Ying-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465
-
[8]
Fenglin Jiang , Anan Liu , Qian Wei , Youcai Hu . Editing function of type Ⅱ thioesterases in the biosynthesis of fungal polyketides. Chinese Chemical Letters, 2024, 35(10): 109504-. doi: 10.1016/j.cclet.2024.109504
-
[9]
Yu Mao , Yilin Liu , Xiaochen Wang , Shengyang Ni , Yi Pan , Yi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443
-
[10]
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
-
[11]
Ajay Piriya Vijaya Kumar Saroja , Yuhan Wu , Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408
-
[12]
Wenya Jiang , Jianyu Wei , Kuan-Guan Liu . Atomically precise superatomic silver nanoclusters stabilized by O-donor ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100371-100371. doi: 10.1016/j.cjsc.2024.100371
-
[13]
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
-
[14]
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
-
[15]
Dake Liu , Shuyan Liu , Fanlei Hu , Zhongtang Li , Zhongjun Li . N-Glycosylated type Ⅱ collagen peptides as therapeutic saccharide vaccines for rheumatoid arthritis. Chinese Chemical Letters, 2024, 35(5): 108762-. doi: 10.1016/j.cclet.2023.108762
-
[16]
Na Wang , Wang Luo , Huaiyi Shen , Huakai Li , Zejiang Xu , Zhiyuan Yue , Chao Shi , Hengyun Ye , Leping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696
-
[17]
Jiaxiang Guo , Zeyi Li , Tianyu Zhang , Xinyu Tian , Yue Wang , Chuandong Dou . Thienothiophene-centered ladder-type π-systems that feature distinct quinoidal π-extension. Chinese Chemical Letters, 2024, 35(5): 109337-. doi: 10.1016/j.cclet.2023.109337
-
[18]
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
-
[19]
Shuang Li , Jiayu Sun , Guocheng Liu , Shuo Zhang , Zhong Zhang , Xiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148
-
[20]
Yatian Deng , Dao Wang , Jinglan Cheng , Yunkun Zhao , Zongbao Li , Chunyan Zang , Jian Li , Lichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(773)
- HTML views(32)