Citation: Xin-Yu Wang, Feng-Jie Guan, Bin Li, Hua Zhang, Hong-Wei Wu, Kai Ji, Chuan-Xiang Liu. Chromogenic and fluorescent “turn-on” chemodosimeter for fluoride based on F-sensitive self-immolative linker[J]. Chinese Chemical Letters, ;2016, 27(02): 211-214. doi: 10.1016/j.cclet.2015.11.014 shu

Chromogenic and fluorescent “turn-on” chemodosimeter for fluoride based on F-sensitive self-immolative linker

  • Corresponding author: Hua Zhang,  Chuan-Xiang Liu, 
  • Received Date: 3 August 2015
    Available Online: 8 September 2015

    Fund Project: We are grateful for financial support from National Natural Science Foundation of China (No. 21202099) (No. 21202099) the Science Foundation of Shanghai Institute of Technology (No. YJ2011-75) (No. YJ2011-75)the Opening Fund of Shanghai Key Laboratory of Chemical Biology (No. SKLCB-2014-01). (No. SKLCB-2014-01)

  • A new chromogenic and fluorescent "turn-on" chemodosimeter 3 was designed and synthesized by using a fluoride-sensitive self-immolative linker, in combination with the fluorescent dyes 7-hydroxy-4-trifluoromethyl coumarin. The chemodosimeter exhibited high selectivity and sensitivity toward fluoride anions through "turn-on" chromogenic and fluorogenic dual modes.
  • 加载中
    1. [1]

      [1] S. Rochat, K. Severin, A simple fluorescence assay for the detection of fluoride in water at neutral pH, Chem. Commun. 47 (2011) 4391-4393.

    2. [2]

      [2] N. Kumari, S. Jha, S. Bhattacharya, Colorimetric probes based on anthraimidazolediones for selective sensing of fluoride and cyanide ion via intramolecular charge transfer, J. Org. Chem. 76 (2011) 8215-8222.

    3. [3]

      [3] L. Fu, F.L. Jiang, D. Fortin, P.D. Harvey, Y. Liu, A reaction-based chromogenic and fluorescent chemodosimeter for fluoride anions, Chem. Commun. 47 (2011) 5503-5505.

    4. [4]

      [4] P. Hou, S. Chen, H. Wang, et al., An aqueous red emitting fluorescent fluoride sensing probe exhibiting a large Stokes shift and its application in cell imaging, Chem. Commun. 50 (2014) 320-322.

    5. [5]

      [5] S. Goswami, A.K. Das, A. Manna, et al., A colorimetric and ratiometric fluorescent turn-on fluoride chemodosimeter and application in live cell imaging: high selectivity via specific Si-O cleavage in semi aqueous media and prompt recovery of ESIPT along with the X-ray structures, Tetrahedron Lett. 55 (2014) 2633-2638.

    6. [6]

      [6] B.Y. Li, C.X. Zhang, C.X. Liu, et al., Chemodosimeter for fluoride ions based on F [10_TD$DIF]-triggered Si-O cleavage followed by the deprotonation/autoxidation of secondary nitrile C-H group, RSC Adv. 4 (2014) 46016-46019.

    7. [7]

      [7] S.K. Asthana, A. Kumar, Neeraj, K.K. Upadhyay, A reaction based chromofluorogenic turn-on probe for specific detection of fluoride over sulfide/thiols, Tetrahedron Lett. 55 (2014) 5988-5992.

    8. [8]

      [8] Y. Zhou, J.F. Zhang, J. Yoon, Fluorescence and colorimetric chemosensors for fluoride-ion detection, Chem. Rev. 114 (2014) 5511-5571.

    9. [9]

      [9] J.J. Chen, C.X. Liu, J.L. Zhang, et al., A novel chemodosimeter for fluoride ions based on deprotonation of the C-H group followed by an autoxidative decyanation process, Chem. Commun. 49 (2013) 10814-10816.

    10. [10]

      [10] J. Cao, C.C. Zhao, W.H. Zhu, A near-infrared fluorescence chemodosimeter for fluoride via specific Si-O cleavage, Tetrahedron Lett. 53 (2012) 2107-2110.

    11. [11]

      [11] R. Hu, J. Feng, D.H. Hu, et al., A rapid aqueous fluoride ion sensor with dual output modes, Angew. Chem. Int. Ed. 49 (2010) 4915-4918.

    12. [12]

      [12] J. Ren, Z. Wu, Y. Zhou, Y. Li, Z.X. Xu, Colorimetric fluoride sensor based on 1,8-naphthalimide derivatives, Dyes Pigm. 91 (2011) 442-445.

    13. [13]

      [13] L.Z. Gai, H.C. Chen, B. Zou, et al., Ratiometric fluorescence chemodosimeters for fluoride anion based on pyrene excimer/monomer transformation, Chem. Commun. 48 (2012) 10721-10723.

    14. [14]

      [14] K.M. Mahoney, P.P. Goswami, A.H. Winter, Self-immolative aryl phthalate esters, J. Org. Chem. 78 (2013) 702-705.

    15. [15]

      [15] Y. Chen, S.L. Wang, X.Q. Xu, et al., Synthesis and biological investigation of coumarin piperazine (piperidine) derivatives as potential multireceptor atypical antipsychotics, J. Med. Chem. 56 (2013) 4671-4690.

    16. [16]

      [16] B.Y. Li, C.X. Zhang, Y. Wang, et al., Chromogenic and fluorescent ‘turn-on’ chemodosimeter for fluoride based on a F-triggered cascade reaction, Luminescence 30 (2015) 699-702.

    17. [17]

      [17] D. Kim, S. Singha, T. Wang, et al., In vivo two-photon fluorescent imaging of fluoride with a desilylation-based reactive probe, Chem. Commun. 48 (2012) 10243-10245.

    18. [18]

      [18] M.R. Rao, S.M. Mobin, M. Ravikanth, Boron-dipyrromethene based specific chemodosimeter for fluoride ion, Tetrahedron 66 (2010) 1728-1734.

    19. [19]

      [19] Z.W. Luo, B. Yang, C. Zhong, et al., A dual-channel probe for selective fluoride determination and application in live cell imaging, Dyes Pigm. 97 (2013) 52-57.

    20. [20]

      [20] S.Y. Kim, J.I. Hong, Chromogenic and fluorescent chemodosimeter for detection of fluoride in aqueous solution, Org. Lett. 9 (2007) 3109-3112.

    21. [21]

      [21] S.Y. Kim, J. Park, M. Koh, S.B. Park, J.I. Hong, Fluorescent probe for detection of fluoride in water and bioimaging in A549 human lung carcinoma cells, Chem. Commun. 31 (2009) 4735-4737.

    22. [22]

      [22] Y. Peng, Y.M. Dong, M. Dong, Y.W. Wang, A selective, sensitive, colorimetric, and fluorescence probe for relay recognition of fluoride and Cu (Ⅱ) ions with "Off-On-Off" switching in ethanol-water solution, J. Org. Chem. 77 (2012) 9072-9080.

    23. [23]

      [23] J.Y. Hu, R. Liu, X.L. Zhu, X. Cai, H.J. Zhu, A highly efficient and selective probe for F detection based on 1H-imidazo [4, 5-b] phenazine derivate, Chin. Chem. Lett. 26 (2015) 339-342.

    24. [24]

      [24] H. Yu, J.Y. Lee, S. Angupillai, et al., A new dual fluorogenic and chromogenic "turnon" chemosensor for Cu2+/F- ions, Spectrochim. Acta, A: Mol. Biomol. Spectrosc. 151 (2015) 48-55.

  • 加载中
    1. [1]

      Deshuai ZhenChunlin LiuQiuhui DengShaoqi ZhangNingman YuanLe LiYu Liu . A review of covalent organic frameworks for metal ion fluorescence sensing. Chinese Chemical Letters, 2024, 35(8): 109249-. doi: 10.1016/j.cclet.2023.109249

    2. [2]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    3. [3]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    4. [4]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    5. [5]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    6. [6]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    7. [7]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    8. [8]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

    9. [9]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    10. [10]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    11. [11]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    12. [12]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    13. [13]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    14. [14]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    15. [15]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    16. [16]

      Ziyou ZhangTe JiHongliang DongZhiqiang ChenZhi Su . Effect of coordination restriction on pressure-induced fluorescence evolution. Chinese Chemical Letters, 2024, 35(12): 109542-. doi: 10.1016/j.cclet.2024.109542

    17. [17]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    18. [18]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    19. [19]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    20. [20]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

Metrics
  • PDF Downloads(0)
  • Abstract views(654)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return