Citation: Ye Huang, Wen-Hua Feng. N,O-Bis(trimethylsilyl)acetamide/N-hydroxysuccinimide ester (BSA/NHS) as coupling agents for dipeptide synthesis[J]. Chinese Chemical Letters, ;2016, 27(03): 357-360. doi: 10.1016/j.cclet.2015.11.012 shu

N,O-Bis(trimethylsilyl)acetamide/N-hydroxysuccinimide ester (BSA/NHS) as coupling agents for dipeptide synthesis

  • Corresponding author: Wen-Hua Feng, 
  • Received Date: 29 September 2015
    Available Online: 26 October 2015

    Fund Project:

  • A method using N,O-bis(trimethylsilyl)acetamide/N-hydroxysuccinimide ester (BSA/NHS) as coupling agents for dipeptide synthesis is descried. The coupling reaction between N-hydroxysuccinimide (NHS) esters and amines could be performed under mild conditions with N,O-bis(trimethylsilyl)acetamide (BSA) as coupling reagent and no additional acid/base is required. All byproducts and excessive reactants are water soluble or hydrolysable and easy to eliminate through water-washing at the purification stage. Moreover, all the reactants are inexpensive and widely used in conventional drug production.
  • 加载中
    1. [1]

      [1] V. du Vigneaud, C. Ressler, J.M. Swan, et al., The synthesis of an octapeptide amide with the hormonal activity of oxytocin, J. Am. Chem. Soc. 75(1953) 4879-4880.

    2. [2]

      [2] C.M. Cloutheir, J.N. Pelleteir, Expanding the organic toolbox:a guide to integrating biocatalysis in synthesis, Chem. Soc. Rev. 41(2012) 1585-1605.

    3. [3]

      [3] B.L. Bray, Large-scale manufacture of peptide therapeutics by chemical synthesis, Nat. Rev. Drug Discov. 2(2003) 587-593.

    4. [4]

      [4] S. Maher, B. Ryan, A. Duffy, et al., Formulation strategies to improve oral peptide delivery, Pharm. Pat. Anal. 3(2014) 313-336.

    5. [5]

      [5] (a) T.R. Pearce, K. Shroff, E. Kokkoli, Peptide targeted lipid nanoparticles for anticancer drug delivery, Adv. Mater. 24(2014) 3803-3822;

    6. [6]

      (b) L.T. Eliassen, G. Berge, B. Sveinbjornsson, et al., Evidence for a direct antitumor mechanism of action of bovine lactoferricin, Anticancer Res. 22(2002) 2703-2710.

    7. [7]

      [6] (a) L.L. Baggio, Q. Huang, T.J. Brown, et al., A recombinant human glucagon-like peptide (GLP)-1-albumin protein (Albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis, Diabetes 53(2004) 2492-2500;

    8. [8]

      (b) Q. Xiao, J. Giguere, M. Parisien, et al., Biological activities of glucagon-like peptide-1 analogues in vitro and in vivo, Biochemistry 40(2001) 2860-2869.

    9. [9]

      [7] C.D. Fiell, J.A. Hiss, R.E.W. Hancock, et al., Designing antimicrobial peptides:form follows function, Nat. Rev. Drug Discov. 11(2012) 37-51.

    10. [10]

      [8] S. Matsunaga, N. Fusetani, K. Hashimoto, et al.,F. Theonellamide, A novel antifungal bicyclic peptide from a marine sponge Theonella sp, J. Am. Chem. Soc. 111(1989) 2582-2588.

    11. [11]

      [9] (a) N. Kaur, X. Lu, M.C. Gerhengorn, et al., Thyrotropin-releasing hormone (TRH) analogues that exhibit selectivity to TRH receptor subtype 2, J. Med. Chem. 48(2005) 6162-6165;

    12. [12]

      (b) J. Rivier, W. Vale, M. Monahan, et al., Synthetic thyrotropin-releasing factor analogs. 3. Effect of replacement or modification of histidine residue on biological activity, J. Med. Chem. 15(1972) 479-482.

    13. [13]

      [10] R.B. Merrifield, Solid phase peptide synthesis. (Ⅰ). The synthesis of a tetrapeptide, J. Am. Chem. Soc. 85(1963) 2149-2154.

    14. [14]

      [11] T. Bruckdorfer, O. Marder, F. Albericio, From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future, Curr. Pharm. Biotechnol. 5(2004) 29-43.

    15. [15]

      [12] (a) E. Bayer, M. Mutter, Liquid phase synthesis of peptides, Nature 237(1972) 512-513;

    16. [16]

      (b) J. Wu, G. An, S. Lin, et al., Solution-phase-peptide synthesis via the groupassisted purification (GAP) chemistry without using chromatography and recrystallization, Chem. Commun. 50(2014) 1259-1261;

    17. [17]

      (c) G. Tana, S. Kitada, S. Fujita, et al., A practical solution-phase synthesis of an antagonistic peptide of TNF-abased on hydrophobic tag strategy, Chem. Commun. 46(2010) 8219-8221;

    18. [18]

      (d) M. Mizuno, K. Goto, T. Miura, et al., A novel peptide synthesis using fluorous chemistry, Chem. Commun. 8(2003) 972-973;

    19. [19]

      (e) D. Takahashi, T. Yano, T. Fukui, Novel diphenylmethyl-derived amide protecting group for efficient liquid-phase peptide synthesis:AJ(Ⅰ)PHASE, Org. Lett. 14(2014) 4514-4517;

    20. [20]

      (f) N. Naganna, N. Madhavan, Soluble non-cross-linked poly(norbornene) supports for peptide synthesis with minimal reagents, J. Org. Chem. 79(2014) 11549-11557;

    21. [21]

      (g) Y. Fujita, S. Fujita, Y. Okada, et al., Soluble tag-assisted peptide head-to-tail cyclization:total synthesis of mahafacyclin B, Org. Lett. 15(2013) 1155-1157.

    22. [22]

      [13] ChristianA.G.N. Montalbetti, V. Falque, Amide bond formation and peptide coupling, Tetrahedron 61(2005) 10827-10852.

    23. [23]

      [14] M. Mikolajczyk, P. Kielbasinski, Recent developments in the carbodiimide chemistry, Tetrahedron 37(1981) 233-284.

    24. [24]

      [15] (a) J.F. Klebe, in:E.C. Taylor (Ed.), Advances in Organic Chemistry, vol. 8, John Wiley and Sons, (Ⅰ)nc, New York, NY, 1972, p. 124;

    25. [25]

      (b) B. Rigo, C. Lespagnol, M. Pauly, Studies on pyrrolidinones. Synthesis of Nacylpyroglutamic esters with bactericide and fungicide properties, J. Heterocycl. Chem. 25(1988) 49-57;

    26. [26]

      (c) C. Bolm, A. Kasyan, K. Drauz, et al., α-Trialkylsilyl-substituted α-amino acid, Angew. Chem. (Ⅰ)nt. Ed. Engl. 39(2000) 2288-2290;

    27. [27]

      (d) A.B. Ouryupina, V.Y. Komissarova, P.V. Petrovskiia, et al., Synthesis of n-phosphorylated aminoacids, Phosphorus Sulfur Silicon Relat. Elem. 103(1995) 215-224;

    28. [28]

      (e) H. Fu, Z.L. Li, Y.F. Zhao, et al., Oligomerization of n,o-bis(trimethylsilyl)-α-amino acids into peptides mediated by o-phenylene ohosphorochloridate, J. Am. Chem. Soc. 121(1999) 291-295;

    29. [29]

      (f) R.P. Singh, T. Umemoto, 4-Fluoropyrrolidine-2-carbonyl fluorides:useful synthons and their facile preparation with 4-tertbutyl-2,6-dimethylphenylsulfur trifluoride, J. Org. Chem. 76(2011) 3113-3121.

  • 加载中
    1. [1]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    2. [2]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

    3. [3]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    4. [4]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    5. [5]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    6. [6]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2023.100332

    7. [7]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    8. [8]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    9. [9]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    10. [10]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    12. [12]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    15. [15]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    16. [16]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    17. [17]

      Yun-Xin HuangLin-Qian YuKe-Yu ChenHao WangShou-Yan ZhaoBao-Cheng HuangRen-Cun Jin . Biochar with self-doped N to activate peroxymonosulfate for bisphenol-A degradation via electron transfer mechanism: The active edge graphitic N site. Chinese Chemical Letters, 2024, 35(9): 109437-. doi: 10.1016/j.cclet.2023.109437

    18. [18]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    19. [19]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    20. [20]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

Metrics
  • PDF Downloads(9)
  • Abstract views(688)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return