Citation: Hong-Kun Yang, Yuan-Feng Tong, Song Wu. A novel and efficient strategy involving a CuI catalyzed cascade reaction to synthesize acenaphtho[1,2-b]quinoline derivatives[J]. Chinese Chemical Letters, ;2016, 27(03): 349-352. doi: 10.1016/j.cclet.2015.11.011 shu

A novel and efficient strategy involving a CuI catalyzed cascade reaction to synthesize acenaphtho[1,2-b]quinoline derivatives

  • Corresponding author: Song Wu, 
  • Received Date: 9 October 2015
    Available Online: 24 October 2015

    Fund Project: We gratefully acknowledge the National Key Technology R&D Program "New Drug Innovation" of China (No.2013ZX09402103) (No.2013ZX09402103)

  • A novel and efficient approach for the straightforward synthesis of biologically significant acenaphtho[1,2-b]quinoline derivatives in good yields utilizing CuI as a catalyst with a broad array of substrates has been developed. The strategy features as a CuI-catalyzed cascade reaction involving the formation of two new C-C bonds and one new C-N bond with high atom economy. A proposed mechanism for the reaction is described.
  • 加载中
    1. [1]

      [1] K.W. Bentley, β-Phenylethylamines and the isoquinoline alkaloids, J. Nat. Prod. Rep. 22(2005) 249-268.

    2. [2]

      [2] M. Chrzanowska, M.D. Rozwadowska, Asymmetric synthesis of isoquinoline alkaloids, Chem. Rev. 104(2004) 3341-3370.

    3. [3]

      [3] K.W. Bentley, β-Phenylethylamines and the isoquinoline alkaloids, J. Nat. Prod. Rep. 23(2006) 444-463.

    4. [4]

      [4] R.S. Keri, S.A. Patil, Quinoline:a promising antitubercular target, Biomed. Pharmacother. 68(2014) 1161-1175.

    5. [5]

      [5] Y. Sheng, B. Sun, X. Xie, et al., DMH1(4-[6-(4-isopropoxyphenyl)pyrazolo[1,5-a]pyrimidin-3-yl]quinoline) inhibits chemo-therapeutic drug-induced autophagy, Acta Pharm. Sin. B 5(2015) 330-336.

    6. [6]

      [6] B. Gryzlo, K. Kulig, Quinoline-a promising fragment in the search for new antimalarials, Mini-rev. Med. Chem. 14(2014) 332-344.

    7. [7]

      [7] P. Zajdel, A. Partyka, K. Marciniec, et al., Quinoline-and isoquinoline-sulfonamide analogs of aripiprazole:novel antipsychotic agents? Future Med. Chem. 6(2014) 57-75.

    8. [8]

      [8] S. Mukherjee, M. Pal, Quinolines:a new hope against inflammation, Drug Discov. Today 18(2013) 389-398.

    9. [9]

      [9] K. Kaur, K.M. Jain, R.P. Reddy, R. Jain, Quinolines and structurally related heterocycles as antimalarials, Euro. J. Med. Chem. 45(2010) 3245-3264.

    10. [10]

      [10] A.D.C. Parenty, L.V. Smith, K.M. Guthrie, et al., Highly stable phenanthridinium frameworks as a new class of tunable DNA binding agents with cytotoxic properties, J. Med. Chem. 48(2005) 4504-4506.

    11. [11]

      [11] V.R. Solomon, H. Lee, Quinoline as a privileged scaffold in cancer drug discovery, Curr. Med. Chem. 18(2011) 1488-1508.

    12. [12]

      [12] K. (Ⅰ)wasa, M. Moriyasu, Y. Tachibana, et al., Simple isoquinoline and benzylisoquinoline alkaloids as potential antimicrobial, antimalarial, cytotoxic, and anti-H(Ⅰ)V agents, Bioorg. Med. Chem. 9(2001) 2871-2884.

    13. [13]

      [13] M.V. Reddy, M.R. Rao, D. Rhodes, et al., Lamellarin α 20-sulfate, an inhibitor of H(Ⅰ)V-1 integrase active against H(Ⅰ)V-1 virus in cell culture, J. Med. Chem. 42(2009) 1901-1907.

    14. [14]

      [14] R. Khusnutdinov, A. Bayguzina, R. Aminov, U. Dzhemilev, Quinoline synthesis by the reaction of anilines with 1,2-diols catalyzed by iron compounds, J. Heterocycl. Chem. (2015), http://dx.doi.org/10.1002/jhet.2425.

    15. [15]

      [15] X. Mi, J. Chen, L. Xu, FeCl3-catalyzed SF5-containing quinoline synthesis:threecomponent coupling reactions of SF5-anilines, aldehydes and alkynes, Eur. J. Org. Chem. 2015(2015) 1415-1418.

    16. [16]

      [16] C.H. Tseng, C.K. Lin, Y.L. Chen, et al., Synthesis, antiproliferative and anti-dengue virus evaluations of 2-aroyl-3-arylquinoline derivatives, Euro. J. Med. Chem. 79(2014) 66-76.

    17. [17]

      [17] M.H. Son, J.Y. Kim, E.J. Lim, et al., Synthesis and biological evaluation of 2-(arylethynyl)quinoline derivatives as mGluR5 antagonists for the treatment of neuropathic pain, Bioorg. Med. Chem. Lett. 23(2013) 1472-1476.

    18. [18]

      [18] P. Szymanski, A. Laznickova, M. Laznicek, et al., 2,3-Dihydro-1H-cyclopenta[b]-quinoline derivatives as acetylcholinesterase inhibitors-synthesis, radiolabeling and biodistribution, (Ⅰ)nt. J. Mol. Sci. 13(2012) 10067-10090.

    19. [19]

      [19] S.L. Schreiber, Target-oriented and diversity-oriented organic synthesis in drug discovery, Science 287(2000) 1964-1969.

    20. [20]

      [20] C.J. O'Connor, H.S.G. Beckmann, D.R. Spring, Diversity-oriented synthesis:producing chemical tools for dissecting biology, Chem. Soc. Rev. 41(2012) 4444-4456.

    21. [21]

      [21] L.Q. Lu, J.R. Chen, W.J. Xiao, Development of cascade reactions for the concise construction of diverse heterocyclic architectures, Acc. Chem. Res. 45(2012) 1278-1293.

    22. [22]

      [22] J.M. Smith, J. Moreno, B.W. Boal, N.K. Garg, Cascade reactions:a driving force in akuammiline alkaloid total synthesis, Angew. Chem. (Ⅰ)nt. Ed. 54(2015) 400-412.

    23. [23]

      [23] J.H. Xie, D.H. Bao, Q.L. Zhou, Recent advances in the development of chiral metal catalysts for the asymmetric hydrogenation of ketones, Synthesis 47(2015) 460-471.

    24. [24]

      [24] E.G. Chepaikin, Oxidative functionalization of alkanes under dioxygen in the presence of homogeneous noble metal catalysts, J. Mol. Catal. A-Chem. 85(2014) 160-174.

    25. [25]

      [25] N.T. Patil, A.K. Mutyala, G.V.V. Lakshmi, P.V.K. Raju, B. Sridhar, Facile assembly of fused isoquinolines by gold ((Ⅰ))-catalyzed coupling-cyclization reactions between o-alkynylbenzaldehydes and aromatic amines containing tethered nucleophiles, Eur. J. Org. Chem. 2010(2010) 1999-2007.

    26. [26]

      [26] B. Jiang, Y. Zhou, Q. Kong, et al., ‘One-pot’ synthesis of dihydrobenzo[4,5][1,3] oxazino[2,3-a]isoquinolines via a silver ((Ⅰ))-catalyzed cascade approach, Molecules 18(2013) 814-831.

    27. [27]

      [27] N.T. Patil, A. Konala, S. Sravanti, et al., Electrophile induced branching cascade:a powerful approach to access various molecular scaffolds and their exploration as novel anti-mycobacterial agents, Chem. Commun. 49(2013) 10109-10111.

    28. [28]

      [28] A.K. Verma, D. Choudhary, R.K. Saunthwal, et al., On water:silver-catalyzed domino approach for the synthesis of benzoxazine/oxazine-fused isoquinolines and naphthyridines from o-alkynyl aldehydes, J. Org. Chem. 78(2013) 6657-6669.

    29. [29]

      [29] Y.F. Tong, S.P. Wang, Q.Y. Yang, Synthesis of 8-iodo-1-naphthaldehyde, Chem. Reagent. 35(2013) 455-456(p.460).

    30. [30]

      [30] L.K. Kong, Y.Y. Zhou, H. Huang, et al., Copper-catalyzed synthesis of substituted quinolines via C-N coupling/condensation from ortho-acylanilines and alkenyl iodides, J. Org. Chem. 80(2015) 1275-1278.

    31. [31]

      [31] B. Li, C.H. Guo, X.S. Fan, J. Zhang, X.Y. Zhang, Synthesis of substituted quinoline via copper-catalyzed one-pot cascade reactions of 2-bromobenzaldehydes with aryl methyl ketones and aqueous ammonia, Tetrahedron Lett. 55(2014) 5944-5948.

    32. [32]

      [32] S.B. Paul, K.C. Majumdar, S. Anwar, S. Choudhury, Copper((Ⅰ)) iodide supported synthesis of coumarin and quinolone annulated 2-aminothiazoles, Synlett 26(2015) 1039-1044.

    33. [33]

      [33] H.C. Ouyang, R.Y. Tang, P. Zhong, Cu(Ⅰ)/(Ⅰ)2-promoted electrophilic tandem cyclization of 2-ethynylbenzaldehydes with ortho-benzenediamines:synthesis of iodoisoquinoline-fused benzimidazoles, J. Org. Chem. 76(2011) 223-228.

  • 加载中
    1. [1]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    2. [2]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    3. [3]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    4. [4]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    5. [5]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    6. [6]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    7. [7]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    8. [8]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    9. [9]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    10. [10]

      Jing-Qi TaoShuai LiuTian-Yu ZhangHong XinXu YangXin-Hua DuanLi-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263

    11. [11]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    12. [12]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    13. [13]

      Zhiwei ChenHeyun ShengXue LiMenghan ChenXin LiQiuling Song . Efficient capture of difluorocarbene by pyridinium 1,4-zwitterionic thiolates: A concise synthesis of difluoromethylene-containing 1,4-thiazine derivatives. Chinese Chemical Letters, 2024, 35(4): 108937-. doi: 10.1016/j.cclet.2023.108937

    14. [14]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    15. [15]

      Huaran ZhangYuting HuangYingjie TangDekun KongYi Zou . Genome mining of multi-substituted alkylresorcinols from a hybrid highly reducing- and type Ⅲ- polyketide pathway. Chinese Chemical Letters, 2024, 35(7): 108968-. doi: 10.1016/j.cclet.2023.108968

    16. [16]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    17. [17]

      Wenyu GaoLiming ZhangChuang ZhaoLixiang LiuXingran YangJinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447

    18. [18]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    19. [19]

      Jun XiongKe-Ke ChenNeng-Bin XieWei ChenWen-Xuan ShaoTong-Tong JiSi-Yu YuYu-Qi FengBi-Feng Yuan . Demethylase-assisted site-specific detection of N1-methyladenosine in RNA. Chinese Chemical Letters, 2024, 35(5): 108953-. doi: 10.1016/j.cclet.2023.108953

    20. [20]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

Metrics
  • PDF Downloads(0)
  • Abstract views(634)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return