Citation: Tian-Fang Cui, Jing Zhang, Xin-Dong Jiang, Ya-Jun Su, Chang-Liang Sun, Jiu-Li Zhao. Synthesis dibromo substituted BOPHY dye for the singlet oxygen generation[J]. Chinese Chemical Letters, ;2016, 27(02): 190-194. doi: 10.1016/j.cclet.2015.11.010 shu

Synthesis dibromo substituted BOPHY dye for the singlet oxygen generation

  • Corresponding author: Xin-Dong Jiang, 
  • Received Date: 19 October 2015
    Available Online: 13 November 2015

    Fund Project: This work was supported by NNSFC (No. 21542004) (No. 21542004) the Program for Liaoning Excellent Talents in University (No. LJQ2015087) (No. LJQ2015087) the Public Research Foundation of Liaoning Province for the Cause of Science (No. 2014003009) (No. 2014003009) Educational Department of Liaoning Province (No. L2014170) (No. L2014170) the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and the start-up funds from Shenyang University of Chemical Technology. (No. 2013304007)

  • A dibromo substituted BOPHY derivative (2) was prepared and found to exhibit photo-sensitization capability. Rapid oxidation of 80% DPBF at the first 6 min was observed suggesting that 2 is a superior photo-sensitizer than methylene blue. The HOMO-LUMO band gap for the lowest energy absorption bands of the BOPHY 1 is smaller than that of PS 2, which is in good agreement with the red shift in the absorption observed between 1 and 2.
  • 加载中
    1. [1]

      [1] A.G. Leach, K.N. Houk, Diels-Alder and ene reactions of singlet oxygen, nitroso compounds and triazolinediones: transition states and mechanisms from contemporary theory, Chem. Commun. (2002) 1243-1255.

    2. [2]

      [2] S.B. Brown, E.A. Brown, I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol. 5 (2004) 497-508.

    3. [3]

      [3] M. Stratakis, M. Orfanopoulos, Regioselectivity in the ene reaction of singlet oxygen with alkenes, Tetrahedron 56 (2000) 1595-1615.

    4. [4]

      [4] D.E. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer 3 (2003) 380-387.

    5. [5]

      [5] I.J. MacDonald, T.J. Dougherty, Basic principles of photodynamic therapy, J. Porphyr. Phthalocyanine 5 (2001) 105-129.

    6. [6]

      [6] W.M. Sharman, C.M. Allen, J.E. van Lier, Photodynamic therapeutics: basic principles and clinical applications, Drug Discov. Today 4 (1999) 507-517.

    7. [7]

      [7] R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy, Chem. Soc. Rev. 24 (1995) 19-32.

    8. [8]

      [8] J.V. Frangioni, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol. 7 (2003) 626-634.

    9. [9]

      [9] E.M. Sevick-Muraca, J.P. Houston, M. Gurfinkel, Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents, Curr. Opin. Chem. Biol. 6 (2002) 642-650.

    10. [10]

      [10] C. Sun, J. Yang, L. Li, et al., Advances in the study of luminescence probes for proteins, J. Chromatogr. B 803 (2004) 173-190.

    11. [11]

      [11] M. Funovics, R. Weissleder, C.H. Tung, Protease sensors for bioimaging, Anal. Bioanal. Chem. 377 (2003) 956-963.

    12. [12]

      [12] J. Michl, Spin-Orbit Coupling in Biradicals. 1. The 2-electrons-in-2-orbitals model revisited, J. Am. Chem. Soc. 118 (1996) 3568-3579.

    13. [13]

      [13] Y. Cakmak, S. Kolemen, S. Duman, et al., Designing excited states: theory-guided access to efficient photosensitizers for photodynamic action, Angew. Chem. Int. Ed. 50 (2011) 11937-11941.

    14. [14]

      [14] W. Pang, X. Zhang, J. Zhou, et al., Modulating the singlet oxygen generation property of meso-b directly linked BODIPY dimers, Chem. Commun. 48 (2012) 5437-5439.

    15. [15]

      [15] N. Adarsh, R.R. Avirah, D. Ramaiah, Tuning photosensitized singlet oxygen generation efficiency of novel aza-BODIPY dyes, Org. Lett. 12 (2010) 5720-5723.

    16. [16]

      [16] T. Yogo, Y. Urano, Y. Ishitsuka, et al., Highly efficient and photostable photosensitizer based on BODIPY chromophore, J. Am. Chem. Soc. 127 (2005) 12162-12163.

    17. [17]

      [17] G. Ulrich, R. Ziessel, A. Harriman, The chemistry of fluorescent bodipy dyes: versatility unsurpassed, Angew. Chem. Int. Ed. 47 (2008) 1184-1201.

    18. [18]

      [18] A. Loudet, K. Burgess, BODIPY dyes and their derivatives: syntheses and spectroscopic properties, Chem. Rev. 107 (2007) 4891-4932.

    19. [19]

      [19] T. Kowada, H. Maeda, K. Kikuchi, BODIPY-based probes for the fluorescence imaging of biomolecules in living cells, Chem. Soc. Rev. 44 (2015) 4953-4972.

    20. [20]

      [20] A. Bessette, G.S. Hanan, Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices, Chem. Soc. Rev. 43 (2014) 3342-3405.

    21. [21]

      [21] H. Lu, J. Mack, Y. Yang, Z. Shen, Structural modification strategies for the rational design of red/NIR region BODIPYs, Chem. Soc. Rev. 43 (2014) 4778-4823.

    22. [22]

      [22] M.A.T. Rogers, 156. 2,4-Diarylpyrroles. Part I. Synthesis of 2:4-diarylpyrroles and 2:2':4:4'-tetra-arylazadipyrromethines, J. Chem. Soc. (1943) 590-596.

    23. [23]

      [23] J. Killoran, L. Allen, J. Gallagher,W. Gallagher, D.F. O'Shea, Synthesis of BF2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour, Chem. Commun. (2002) 1862-1863.

    24. [24]

      [24] H. Maas, G. Calzaferri, Trapping energy from and injecting energy into dye-zeolite nanoantennae, Angew. Chem. Int. Ed. 41 (2002) 2284-2288.

    25. [25]

      [25] A. Burghart, L.H. Thoresen, J. Chen, et al., Energy transfer cassettes based on BODIPY dyes, Chem. Commun. (2000) 2203-2204.

    26. [26]

      [26] A. Gorman, J. Killoran, C. O'Shea, et al., In vitro demonstration of the heavy-atom effect for photodynamic therapy, J. Am. Chem. Soc. 126 (2004) 10619-10631.

    27. [27]

      [27] R. Gresser, M. Hummert, H. Hartmann, K. Leo, M. Riede, Synthesis and characterization of near-infrared absorbing benzannulated aza-BODIPY dyes, Chem. Eur. J. 17 (2011) 2939-2947.

    28. [28]

      [28] Z. Zhang, B. Xu, J. Su, et al., Color-tunable solid-state emission of 2,2'-biindenylbased fluorophores, Angew. Chem. Int. Ed. 50 (2011) 11654-11657.

    29. [29]

      [29] T. Kakui, S. Sugawara, Y. Hirata, S. Kojima, Y. Yamamoto, Anti-aromatic 16π porphyrin-metal complexes with meso-alkyl substituents, Chem. Eur. J. 17 (2011) 7768-7771.

    30. [30]

      [30] J. Shao, H. Sun, H. Guo, et al., A highly selective red-emitting FRET fluorescent molecular probe derived from BODIPY for the detection of cysteine and homocysteine: an experimental and theoretical study, Chem. Sci. 3 (2012) 1049-1061.

    31. [31]

      [31] M. Nakamura, H. Tahara, K. Takahashi, et al., π-Fused bis-BODIPY as a candidate for NIR dyes, Org. Biomol. Chem. 10 (2012) 6840-6849.

    32. [32]

      [32] S. Kim, T.Y. Ohulchanskyy, A. Baev, P.N. Prasad, Synthesis and nanoparticle encapsulation of 3,5-difuranylvinyl-boradiaza-s-indacenes for near-infrared fluorescence imaging, J. Mater. Chem. 19 (2009) 3181-3188.

    33. [33]

      [33] I.S. Tamgho, A. Hasheminasab, J.T. Engle, V.N. Nemykin, C.J. Ziegler, A new highly fluorescent and symmetric pyrrole-BF2 chromophore: BOPHY, J. Am. Chem. Soc. 136 (2014) 5623-5626.

    34. [34]

      [34] C. Yu, L. Jiao, P. Zhang, et al., Straightforward synthesis of oligopyrroles through a regioselective S(N)Ar reaction of pyrroles and halogenated boron dipyrrins, Org. Lett. 16 (2014) 1952-1955.

    35. [35]

      [35] X.D. Jiang, J. Zhang, T. Furuyama, W. Zhao, Development of mono-and di-AcO substituted BODIPYs on the boron center, Org. Lett. 14 (2012) 248-251.

    36. [36]

      [36] X.D. Jiang, H. Zhang, Y. Zhang, W. Zhao, Development of non-symmetric thiophene-fused BODIPYs, Tetrahedron 68 (2012) 9795-9801.

    37. [37]

      [37] X.D. Jiang, R. Gao, Y. Yue, G.T. Sun, W. Zhao, A NIR BODIPY dye bearing 3,4,4atrihydroxanthene moieties, Org. Biomol. Chem. 10 (2012) 6861-6865.

    38. [38]

      [38] X.D. Jiang, Y. Fu, T. Zhang, W. Zhao, Synthesis and properties of NIR aza-BODIPYs with aryl and alkynyl substituents on the boron center, Tetrahedron Lett. 53 (2012) 5703-5706.

    39. [39]

      [39] X.D. Jiang, D. Xi, J. Zhao, et al., A styryl-containing aza-BODIPY as a near-infrared dye, RSC Adv. 4 (2014) 60970-60973.

    40. [40]

      [40] X.D. Jiang, J. Zhao, D. Xi, et al., A new water-soluble phosphorus-dipyrromethene and phosphorus-azadipyrromethene dye: PODIPY/aza-PODIPY, Chem. Eur. J. 21 (2015) 6079-6082.

    41. [41]

      [41] X.D. Jiang, D. Xi, C.L. Sun, et al., Synthesis of a pyrenyl-fused aza-BODIPY as a nearinfrared dye having the absorption maximum at 746 nm, Tetrahedron Lett. 56 (2015) 4868-4870.

    42. [42]

      [42] X.D. Jiang, H. Yu, J. Zhao, et al., A colorimetric chemosensor based on new watersoluble PODIPY dye for Hg2+ detection, Chin. Chem. Lett. 26 (2015) 1241-1245.

    43. [43]

      [43] P. Shi, X.D. Jiang, R. Gao, Y. Dou, W. Zhao, Synthesis and application of Vis/NIR dialkyl aminophenylbuta-1,3-dienyl borondipyrromethene dyes, Chin. Chem. Lett. 26 (2015) 834-838.

    44. [44]

      [44] X.D. Jiang, Y. Su, S. Yue, et al., Synthesis of mono-(p-dimethylamino)styrylcontaining BOPHY dye for a turn-on pH sensor, RSC Adv. 5 (2015) 16735-16739.

    45. [45]

      [45] Q. Huaulmé, A. Mirloup, P. Retailleau, R. Ziessel, Synthesis of highly functionalized BOPHY chromophores displaying large stokes shifts, Org. Lett. 17 (2015) 2246-2249.

    46. [46]

      [46] K. Gollnick, A. Griesbeck, Singlet oxygen photooxygenation of furans: Isolation and reactions of (4 + 2)-cycloaddition products (unsaturated sec-ozonides), Tetrahedron 41 (1985) 2057-2068.

    47. [47]

      [47] A.T.R.Williams, S.A.Winfield, J.N.Miller,Relativefluorescencequantumyieldsusinga computer-controlled luminescence spectrometer, Analyst 108 (1983) 1067-1071.

    48. [48]

      [48] R.F. Kubin, A.N. Fletcher, Fluorescence quantum yields of some rhodamine dyes, J. Lumin. 27 (1982) 455-462.

    49. [49]

      [49] L. Huang, X. Cui, B. Therrien, J. Zhao, Energy-funneling-based broadband visiblelight-absorbing bodipy-C60 triads and tetrads as dual functional heavy-atom-free organic triplet photosensitizers for photocatalytic organic reactions, Chem. Eur. J. 19 (2013) 17472-17482.

    50. [50]

      [50] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 03, Gaussian Inc, Pittsburgh, PA, 2003.

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2024.100192

    3. [3]

      Yiling LiZekun GaoXiuxiu YueMinhuan LanXiuli ZhengBenhua WangShuang ZhaoXiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133

    4. [4]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    5. [5]

      Zhe LiPing-Zhao LiangLi XuFei-Yu YangTian-Bing RenLin YuanXia YinXiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190

    6. [6]

      Du LiuYuyan LiHankun ZhangBenhua WangChaoyi YaoMinhuan LanZhanhong YangXiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910

    7. [7]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    8. [8]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    9. [9]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    10. [10]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    11. [11]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    12. [12]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    13. [13]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    14. [14]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    15. [15]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    16. [16]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    17. [17]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    18. [18]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    19. [19]

      Zhipeng LiQincong FengJianliang Shen . A β-lactamase-activatable photosensitizer for the treatment of resistant bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109602-. doi: 10.1016/j.cclet.2024.109602

    20. [20]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

Metrics
  • PDF Downloads(0)
  • Abstract views(623)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return