Citation:
Tian-Fang Cui, Jing Zhang, Xin-Dong Jiang, Ya-Jun Su, Chang-Liang Sun, Jiu-Li Zhao. Synthesis dibromo substituted BOPHY dye for the singlet oxygen generation[J]. Chinese Chemical Letters,
;2016, 27(02): 190-194.
doi:
10.1016/j.cclet.2015.11.010
-
A dibromo substituted BOPHY derivative (2) was prepared and found to exhibit photo-sensitization capability. Rapid oxidation of 80% DPBF at the first 6 min was observed suggesting that 2 is a superior photo-sensitizer than methylene blue. The HOMO-LUMO band gap for the lowest energy absorption bands of the BOPHY 1 is smaller than that of PS 2, which is in good agreement with the red shift in the absorption observed between 1 and 2.
-
Keywords:
- BOPHY,
- Singlet oxygen,
- Photosensitizer,
- Photophysical property,
- DFT
-
-
-
[1]
[1] A.G. Leach, K.N. Houk, Diels-Alder and ene reactions of singlet oxygen, nitroso compounds and triazolinediones: transition states and mechanisms from contemporary theory, Chem. Commun. (2002) 1243-1255.
-
[2]
[2] S.B. Brown, E.A. Brown, I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol. 5 (2004) 497-508.
-
[3]
[3] M. Stratakis, M. Orfanopoulos, Regioselectivity in the ene reaction of singlet oxygen with alkenes, Tetrahedron 56 (2000) 1595-1615.
-
[4]
[4] D.E. Dolmans, D. Fukumura, R.K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer 3 (2003) 380-387.
-
[5]
[5] I.J. MacDonald, T.J. Dougherty, Basic principles of photodynamic therapy, J. Porphyr. Phthalocyanine 5 (2001) 105-129.
-
[6]
[6] W.M. Sharman, C.M. Allen, J.E. van Lier, Photodynamic therapeutics: basic principles and clinical applications, Drug Discov. Today 4 (1999) 507-517.
-
[7]
[7] R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy, Chem. Soc. Rev. 24 (1995) 19-32.
-
[8]
[8] J.V. Frangioni, In vivo near-infrared fluorescence imaging, Curr. Opin. Chem. Biol. 7 (2003) 626-634.
-
[9]
[9] E.M. Sevick-Muraca, J.P. Houston, M. Gurfinkel, Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents, Curr. Opin. Chem. Biol. 6 (2002) 642-650.
-
[10]
[10] C. Sun, J. Yang, L. Li, et al., Advances in the study of luminescence probes for proteins, J. Chromatogr. B 803 (2004) 173-190.
-
[11]
[11] M. Funovics, R. Weissleder, C.H. Tung, Protease sensors for bioimaging, Anal. Bioanal. Chem. 377 (2003) 956-963.
-
[12]
[12] J. Michl, Spin-Orbit Coupling in Biradicals. 1. The 2-electrons-in-2-orbitals model revisited, J. Am. Chem. Soc. 118 (1996) 3568-3579.
-
[13]
[13] Y. Cakmak, S. Kolemen, S. Duman, et al., Designing excited states: theory-guided access to efficient photosensitizers for photodynamic action, Angew. Chem. Int. Ed. 50 (2011) 11937-11941.
-
[14]
[14] W. Pang, X. Zhang, J. Zhou, et al., Modulating the singlet oxygen generation property of meso-b directly linked BODIPY dimers, Chem. Commun. 48 (2012) 5437-5439.
-
[15]
[15] N. Adarsh, R.R. Avirah, D. Ramaiah, Tuning photosensitized singlet oxygen generation efficiency of novel aza-BODIPY dyes, Org. Lett. 12 (2010) 5720-5723.
-
[16]
[16] T. Yogo, Y. Urano, Y. Ishitsuka, et al., Highly efficient and photostable photosensitizer based on BODIPY chromophore, J. Am. Chem. Soc. 127 (2005) 12162-12163.
-
[17]
[17] G. Ulrich, R. Ziessel, A. Harriman, The chemistry of fluorescent bodipy dyes: versatility unsurpassed, Angew. Chem. Int. Ed. 47 (2008) 1184-1201.
-
[18]
[18] A. Loudet, K. Burgess, BODIPY dyes and their derivatives: syntheses and spectroscopic properties, Chem. Rev. 107 (2007) 4891-4932.
-
[19]
[19] T. Kowada, H. Maeda, K. Kikuchi, BODIPY-based probes for the fluorescence imaging of biomolecules in living cells, Chem. Soc. Rev. 44 (2015) 4953-4972.
-
[20]
[20] A. Bessette, G.S. Hanan, Design, synthesis and photophysical studies of dipyrromethene-based materials: insights into their applications in organic photovoltaic devices, Chem. Soc. Rev. 43 (2014) 3342-3405.
-
[21]
[21] H. Lu, J. Mack, Y. Yang, Z. Shen, Structural modification strategies for the rational design of red/NIR region BODIPYs, Chem. Soc. Rev. 43 (2014) 4778-4823.
-
[22]
[22] M.A.T. Rogers, 156. 2,4-Diarylpyrroles. Part I. Synthesis of 2:4-diarylpyrroles and 2:2':4:4'-tetra-arylazadipyrromethines, J. Chem. Soc. (1943) 590-596.
-
[23]
[23] J. Killoran, L. Allen, J. Gallagher,W. Gallagher, D.F. O'Shea, Synthesis of BF2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour, Chem. Commun. (2002) 1862-1863.
-
[24]
[24] H. Maas, G. Calzaferri, Trapping energy from and injecting energy into dye-zeolite nanoantennae, Angew. Chem. Int. Ed. 41 (2002) 2284-2288.
-
[25]
[25] A. Burghart, L.H. Thoresen, J. Chen, et al., Energy transfer cassettes based on BODIPY dyes, Chem. Commun. (2000) 2203-2204.
-
[26]
[26] A. Gorman, J. Killoran, C. O'Shea, et al., In vitro demonstration of the heavy-atom effect for photodynamic therapy, J. Am. Chem. Soc. 126 (2004) 10619-10631.
-
[27]
[27] R. Gresser, M. Hummert, H. Hartmann, K. Leo, M. Riede, Synthesis and characterization of near-infrared absorbing benzannulated aza-BODIPY dyes, Chem. Eur. J. 17 (2011) 2939-2947.
-
[28]
[28] Z. Zhang, B. Xu, J. Su, et al., Color-tunable solid-state emission of 2,2'-biindenylbased fluorophores, Angew. Chem. Int. Ed. 50 (2011) 11654-11657.
-
[29]
[29] T. Kakui, S. Sugawara, Y. Hirata, S. Kojima, Y. Yamamoto, Anti-aromatic 16π porphyrin-metal complexes with meso-alkyl substituents, Chem. Eur. J. 17 (2011) 7768-7771.
-
[30]
[30] J. Shao, H. Sun, H. Guo, et al., A highly selective red-emitting FRET fluorescent molecular probe derived from BODIPY for the detection of cysteine and homocysteine: an experimental and theoretical study, Chem. Sci. 3 (2012) 1049-1061.
-
[31]
[31] M. Nakamura, H. Tahara, K. Takahashi, et al., π-Fused bis-BODIPY as a candidate for NIR dyes, Org. Biomol. Chem. 10 (2012) 6840-6849.
-
[32]
[32] S. Kim, T.Y. Ohulchanskyy, A. Baev, P.N. Prasad, Synthesis and nanoparticle encapsulation of 3,5-difuranylvinyl-boradiaza-s-indacenes for near-infrared fluorescence imaging, J. Mater. Chem. 19 (2009) 3181-3188.
-
[33]
[33] I.S. Tamgho, A. Hasheminasab, J.T. Engle, V.N. Nemykin, C.J. Ziegler, A new highly fluorescent and symmetric pyrrole-BF2 chromophore: BOPHY, J. Am. Chem. Soc. 136 (2014) 5623-5626.
-
[34]
[34] C. Yu, L. Jiao, P. Zhang, et al., Straightforward synthesis of oligopyrroles through a regioselective S(N)Ar reaction of pyrroles and halogenated boron dipyrrins, Org. Lett. 16 (2014) 1952-1955.
-
[35]
[35] X.D. Jiang, J. Zhang, T. Furuyama, W. Zhao, Development of mono-and di-AcO substituted BODIPYs on the boron center, Org. Lett. 14 (2012) 248-251.
-
[36]
[36] X.D. Jiang, H. Zhang, Y. Zhang, W. Zhao, Development of non-symmetric thiophene-fused BODIPYs, Tetrahedron 68 (2012) 9795-9801.
-
[37]
[37] X.D. Jiang, R. Gao, Y. Yue, G.T. Sun, W. Zhao, A NIR BODIPY dye bearing 3,4,4atrihydroxanthene moieties, Org. Biomol. Chem. 10 (2012) 6861-6865.
-
[38]
[38] X.D. Jiang, Y. Fu, T. Zhang, W. Zhao, Synthesis and properties of NIR aza-BODIPYs with aryl and alkynyl substituents on the boron center, Tetrahedron Lett. 53 (2012) 5703-5706.
-
[39]
[39] X.D. Jiang, D. Xi, J. Zhao, et al., A styryl-containing aza-BODIPY as a near-infrared dye, RSC Adv. 4 (2014) 60970-60973.
-
[40]
[40] X.D. Jiang, J. Zhao, D. Xi, et al., A new water-soluble phosphorus-dipyrromethene and phosphorus-azadipyrromethene dye: PODIPY/aza-PODIPY, Chem. Eur. J. 21 (2015) 6079-6082.
-
[41]
[41] X.D. Jiang, D. Xi, C.L. Sun, et al., Synthesis of a pyrenyl-fused aza-BODIPY as a nearinfrared dye having the absorption maximum at 746 nm, Tetrahedron Lett. 56 (2015) 4868-4870.
-
[42]
[42] X.D. Jiang, H. Yu, J. Zhao, et al., A colorimetric chemosensor based on new watersoluble PODIPY dye for Hg2+ detection, Chin. Chem. Lett. 26 (2015) 1241-1245.
-
[43]
[43] P. Shi, X.D. Jiang, R. Gao, Y. Dou, W. Zhao, Synthesis and application of Vis/NIR dialkyl aminophenylbuta-1,3-dienyl borondipyrromethene dyes, Chin. Chem. Lett. 26 (2015) 834-838.
-
[44]
[44] X.D. Jiang, Y. Su, S. Yue, et al., Synthesis of mono-(p-dimethylamino)styrylcontaining BOPHY dye for a turn-on pH sensor, RSC Adv. 5 (2015) 16735-16739.
-
[45]
[45] Q. Huaulmé, A. Mirloup, P. Retailleau, R. Ziessel, Synthesis of highly functionalized BOPHY chromophores displaying large stokes shifts, Org. Lett. 17 (2015) 2246-2249.
-
[46]
[46] K. Gollnick, A. Griesbeck, Singlet oxygen photooxygenation of furans: Isolation and reactions of (4 + 2)-cycloaddition products (unsaturated sec-ozonides), Tetrahedron 41 (1985) 2057-2068.
-
[47]
[47] A.T.R.Williams, S.A.Winfield, J.N.Miller,Relativefluorescencequantumyieldsusinga computer-controlled luminescence spectrometer, Analyst 108 (1983) 1067-1071.
-
[48]
[48] R.F. Kubin, A.N. Fletcher, Fluorescence quantum yields of some rhodamine dyes, J. Lumin. 27 (1982) 455-462.
-
[49]
[49] L. Huang, X. Cui, B. Therrien, J. Zhao, Energy-funneling-based broadband visiblelight-absorbing bodipy-C60 triads and tetrads as dual functional heavy-atom-free organic triplet photosensitizers for photocatalytic organic reactions, Chem. Eur. J. 19 (2013) 17472-17482.
-
[50]
[50] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 03, Gaussian Inc, Pittsburgh, PA, 2003.
-
[1]
-
-
-
[1]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[2]
Tsegaye Tadesse Tsega , Jiantao Zai , Chin Wei Lai , Xin-Hao Li , Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2024.100192
-
[3]
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
-
[4]
Shenghui Tu , Anru Liu , Hongxiang Zhang , Lu Sun , Minghui Luo , Shan Huang , Ting Huang , Honggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761
-
[5]
Zhe Li , Ping-Zhao Liang , Li Xu , Fei-Yu Yang , Tian-Bing Ren , Lin Yuan , Xia Yin , Xiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190
-
[6]
Du Liu , Yuyan Li , Hankun Zhang , Benhua Wang , Chaoyi Yao , Minhuan Lan , Zhanhong Yang , Xiangzhi Song . Three-in-one erlotinib-modified NIR photosensitizer for fluorescence imaging and synergistic chemo-photodynamic therapy. Chinese Chemical Letters, 2025, 36(2): 109910-. doi: 10.1016/j.cclet.2024.109910
-
[7]
Yan Zhu , Jia Liu , Meiheng Lv , Tingting Wang , Dongxiang Zhang , Rong Shang , Xin-Dong Jiang , Jianjun Du , Guiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446
-
[8]
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
-
[9]
Chi Zhang , Ning Ding , Yuwei Pan , Lichun Fu , Ying Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579
-
[10]
Qihang Wu , Hui Wen , Wenhai Lin , Tingting Sun , Zhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692
-
[11]
Xin Lv , Hongxing Zhang , Kaibo Duan , Wenhui Dai , Zhihui Wen , Wei Guo , Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090
-
[12]
Rongxin Zhu , Shengsheng Yu , Xuanzong Yang , Ruyu Zhu , Hui Liu , Kaikai Niu , Lingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539
-
[13]
Run-Han Li , Tian-Yi Dang , Wei Guan , Jiang Liu , Ya-Qian Lan , Zhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805
-
[14]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[15]
Ting-Ting Huang , Jin-Fa Chen , Juan Liu , Tai-Bao Wei , Hong Yao , Bingbing Shi , Qi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281
-
[16]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[17]
Leichen Wang , Anqing Mei , Na Li , Xiaohong Ruan , Xu Sun , Yu Cai , Jinjun Shao , Xiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974
-
[18]
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
-
[19]
Zhipeng Li , Qincong Feng , Jianliang Shen . A β-lactamase-activatable photosensitizer for the treatment of resistant bacterial infections. Chinese Chemical Letters, 2024, 35(11): 109602-. doi: 10.1016/j.cclet.2024.109602
-
[20]
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(623)
- HTML views(7)