Citation: Mubarak H. Shaikh, Dnyaneshwar D. Subhedar, Firoz A. Kalam Khan, Jaiprakash N. Sangshetti, Bapurao B. Shingate. 1,2,3-Triazole incorporated coumarin derivatives as potential antifungal and antioxidant agents[J]. Chinese Chemical Letters, ;2016, 27(02): 295-301. doi: 10.1016/j.cclet.2015.11.003 shu

1,2,3-Triazole incorporated coumarin derivatives as potential antifungal and antioxidant agents

  • Corresponding author: Bapurao B. Shingate, 
  • Received Date: 10 March 2015
    Available Online: 7 July 2015

  • A series of novel ethyl-7-((1-(benzyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-oxo-2H-chromene-3-carboxylates 8a-h as potential antifungal agents were synthesized via click chemistry. The antifungal activity was evaluated against five human pathogenic fungal strains, such as Candida albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger and Cryptococcus neoformans. Compound 8c, 8d, 8e and 8h were found to be equipotent against C. albicans when compared with miconazole and compound 8f was found to be two-fold more active compared with miconazole and equipotent to fluconazole against C. albicans. The coumarin-based triazole derivatives were also evaluated for antioxidant activity and compound 8a was found to be potent antioxidant when compared with standard drug. Furthermore, molecular docking study of the newly synthesized compounds was performed and results showed good binding mode in the active site of fungal C. albicans enzyme P450 cytochrome lanosterol 14α-emethylase. Moreover, the synthesized compounds were also analyzed for ADME properties and showed potential to build up as good oral drug candidates.
  • 加载中
    1. [1]

      [1] D.J. Sheehan, C.A. Hitchcock, C.M. Sibley, Current and emerging azole antifungal agents, Clin. Microbiol. Rev. 12 (1999) 40-79.

    2. [2]

      [2] R. Cha, J.D. Sobel, Fluconazole for the treatment of candidiasis: 15 years experience, Expert Rev. Anti-Infect. Ther. 2 (2004) 357-366.

    3. [3]

      [3] N.H. Georgopapadakou, T.J. Walsh, Antifungal agents: chemotherapeutic targets and immunologic strategies, Antimicrob. Agents Chemoth. 40 (1996) 279-291.

    4. [4]

      [4] M.A. Pfaller, S.A. Messer, R.J. Hollis, R.N. Jones, In vitro activities of posaconazole (Sch 56592) compared with those of itraconazole and fluconazole against 3,685 clinical isolates of Candida spp. and Cryptococcus neoformans, Antimicrob. Agents Chemoth. 45 (2001) 2862-2864.

    5. [5]

      [5] L. Jeu, F.J. Piacenti, A.G. Lyakhovetskiy, H.B. Fung, Voriconazole, Clin. Ther. 25 (2003) 1321-1381.

    6. [6]

      [6] G.I. Lepesheva, N.G. Zaitseva, W.D. Nes, et al., CYP51 from trypanosomacruzi: a phyla-specific residue in the B0 helix defines substrate preferences of sterol 14ademethylase, J. Biol. Chem. 281 (2006) 3577-3585.

    7. [7]

      [7] (a) K. Ilango, C.R. Biju, In silico docking investigation, synthesis and cytotoxic studies of coumarin substituted 1, 3, 4-oxadiazole derivatives, J. Pharm. Res. 5 (2012) 1514-1517;

    8. [8]

      (b) P.M. Ronad, M.N. Noolvi, S. Sapkal, et al., Synthesis and antimicrobial activity of 7-(2-substituted phenylthiazolidinyl)-benzopyran-2-one derivatives, Eur. J. Med. Chem. 45 (2010) 85-89.

    9. [9]

      [8] (a) M. Raghu, A. Nagaraj, C.S. Reddy, Synthesis and in vitro study of novel bis-[3-(2-arylmethylidenimino-1,3-thiazol-4-yl)-4-hydroxy-2H-chromen-2-one-6-yl] methane and bis-[3-(2-arylidenhydrazo-1,3-thiazol-4-yl)-4-hydroxy-2Hchromen-2-one-6-yl] methane as potential antimicrobial agents, J. Heterocyclic Chem. 46 (2009) 261-267;

    10. [10]

      (b) M.A. Gouda, M.A. Berghot, E.A. Baz, et al., Synthesis, antitumor and antioxidant evaluation of some new thiazole and thiophene derivatives incorporated coumarin moiety, Med. Chem. Res. 21 (2012) 1062-1070.

    11. [11]

      [9] (a) J. Sun, W.X. Ding, K.Y. Zhang, Y. Zou, Efficient synthesis and biological evaluation of 4-arylcoumarin derivatives, Chin. Chem. Lett. 22 (2011) 667-670;

    12. [12]

      (b) J.M.C. Gutteridge, B. Halliwell, Invited review free radicals in disease processes: a compilation of cause and consequence, Free Radical Res. Commun. 19 (1993) 141-158.

    13. [13]

      [10] R.M. Patel, N.J. Patel, In vitro antioxidant activity of coumarin compounds by DPPH, super oxide and nitric oxide free radical scavenging methods, J. Adv. Pharm. Technol. Res. 1 (2011) 52-68.

    14. [14]

      [11] A. Murakami, G.X. Gao, M. Omura, et al., 1,1-Dimethylallylcoumarins potently supress both lipopolysaccharide-and interferon-γ-induced nitric oxide generation in mouse macrophage RAW 264.7 cells, Bioorg. Med. Chem. Lett. 10 (2000) 59-62.

    15. [15]

      [12] R.G. Lima-Neto, N.N.M. Cavalcante, R.M. Srivastava, et al., Synthesis of 1,2,3-triazole derivatives and in vitro antifungal evaluation on Candida strains, Molecules 17 (2012) 5882-5892.

    16. [16]

      [13] (a) N. Boechat, V.F. Ferreira, S.B. Ferreira, et al., Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain, J. Med. Chem. 54 (2011) 5988-5999;

    17. [17]

      (b) J.L. He, J.P. Xie, Advances in Mycobacterium siderophore-based drug discovery, Acta Pharm. Sin. B 1 (2011) 8-13.

    18. [18]

      [14] S.G. Agalave, S.R. Maujan, V.S. Pore, Click chemistry: 1,2,3-triazoles as pharmacophores, Chem. Asian J. 6 (2011) 2696-2718.

    19. [19]

      [15] M.R. Senger, L.D.C.A. Gomes, S.B. Ferreira, et al., Kinetics studies on the inhibition mechanism of pancreatic a-amylase by glycoconjugated 1H-1,2,3-triazoles: a new class of inhibitors with hypoglycemiant activity, Chem. Biol. Chem. 13 (2012) 1584-1593.

    20. [20]

      [16] X. Zhao, B.W. Lu, J.R. Lu, et al., Design, synthesis and antimicrobial activities of 1,2,3-triazole derivatives, Chin. Chem. Lett. 23 (2012) 933-935.

    21. [21]

      [17] R.J. Bochis, J.C. Chabala, E. Harris, et al., Benzylated 1,2,3-triazoles as anticoccidiostats, J. Med. Chem. 34 (1991) 2843-2852.

    22. [22]

      [18] (a) J.L. Kelley, C.S. Koble, R.G. Davis, et al., 1-(Fluorobenzyl)-4-amino-1H-1,2,3-triazolo[4,5-c] pyridines: synthesis and anticonvulsant activity, J. Med. Chem. 38 (1995) 4131-4134;

    23. [23]

      (b) Q.H. Li, Y. Ding, N.W. Huang, Synthesis and biological activities of dithiocarbamates containing 1,2,3-triazoles group, Chinese Chem. Lett. 25 (2014) 1469-1472.

    24. [24]

      [19] R. Raj, P. Singh, P. Singh, et al., Azide-alkyne cycloadditionen route to 1H-1,2,3-triazole-tethered 7-chloroquinoline-isatin chimeras: synthesis and antimalarial evaluation, Eur. J. Med. Chem. 62 (2013) 590-596.

    25. [25]

      [20] A.K. Jordao, P.P. Afonso, V.F. Ferreira, et al., Antiviral evaluation of N-amino-1,2, 3-triazoles against cantagalo virus replication in cell culture, Eur. J. Med. Chem. 44 (2009) 3777-3783.

    26. [26]

      [21] B.L. Wilkinson, H. Long, E. Sim, A.J. Fairbanks, Synthesis of Arabino glycosyltriazoles as potential inhibitors of mycobacterial cell wall biosynthesis, Bioorg. Med. Chem. Lett. 18 (2008) 6265-6267.

    27. [27]

      [22] M. Kume, T. Kubota, Y. Kimura, et al., Orally active cephalosporins Ⅱ. Synthesis and structure-activity relationships of new 7-β-[(Z)-2-(2-aminothiazol-4-yl)-2-hydroxyiminoacetamido]-cephalosporins with 1,2,3-triazole in C-3 side chain, J. Antibiot. 46 (1993) 177-192.

    28. [28]

      [23] Y. Shi, C.H. Zhou, Synthesis and evaluation of a class of new coumarintriazole derivatives as potential antimicrobial agents, Bioorg. Med. Chem. Lett. 21 (2011) 956-960.

    29. [29]

      [24] K. Kushwaha, N. Kaushik, Lata, S.C. Jain, Design and synthesis of novel 2Hchromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials, Bioorg. Med. Chem. Lett. 24 (2014) 1795-1801.

    30. [30]

      [25] R.A. Kusanur, M.V. Kulkarni, New 1,3-dipolar cycloadducts of 3-azidoacetylcoumarins with DMAD and their antimicrobial activity, Indian J. Chem. B 44 (2005) 591-594.

    31. [31]

      [26] (a) M.H. Shaikh, D.D. Subhedar, L. Nawale, et al., 1,2,3-Triazole derivatives as antitubercular agents; Synthesis, biological evaluation and molecular docking study, Med. Chem. Commun. 6 (2015) 1104-1116;

    32. [32]

      (b) A.P.G. Nikalje, M.S. Ghodke, F.A.K. Khan, J.N. Sangshetti, CAN catalyzed onepot synthesis and docking study of some novel substituted imidazole coupled 1,2,4-triazole-5-carboxylic acids as antifungal agents, Chin. Chem. Lett. 26 (2015) 108-112;

    33. [33]

      (c) J.N. Sangshetti, F.A.K. Khan, R.S. Chouthe, M.G. Damale, D.B. Shinde, Synthesis, docking and ADMET prediction of novel 5-((5-substituted-1H-1,2,4-triazol-3-yl) methyl)-4,5,6,7-tetrahydrothieno[3,2-c] pyridine as antifungal agents, Chin. Chem. Lett. 25 (2014) 1033-1038;

    34. [34]

      (d) B.B. Shingate, B.G. Hazra, D.B. Salunke, V.S. Pore, M.V. Deshpande, Stereoselective synthesis and antimicrobial activity of steroidal C-20 tertiary alcohols with thiazole/pyridine side chain, Eur. J. Med. Chem. 46 (2011) 3681-3689;

    35. [35]

      (e) A.H. Kategaonkar, P.V. Shinde, A.H. Kategaonkar, et al., Synthesis and biological evaluation of new 2-chloro-3-((4-phenyl-1H-1,2,3-triazol-1-yl)methyl)quinoline derivatives via click chemistry approach, Eur. J. Med. Chem. 45 (2010) 3142-3146.

    36. [36]

      [27] D. Greenwood, R.C.B. Slack, J.F. Peutherer, Medical Microbiology, 14th ed., ELBS, London, 1992.

    37. [37]

      [28] M. Burits, F. Bucar, Antioxidant activity of nigella sativa essential oil, Phytother. Res. 14 (2000) 323-328.

    38. [38]

      [29] T.A. Halgren, Merck molecular force field. I. Basis form, scope, parameterization, and performance of MMFF94, J. Comput. Chem. 17 (1996) 490-519.

    39. [39]

      [30] R.W.W. Hooft, G. Vriend, C. Sander, E.E. Abola, Errors in protein structures, Nature 381 (1996) 272.

    40. [40]

      [31] VLife Molecular Design Suite 4.3, VLife Sciences Technologies Pvt. Ltd., www.Vlifesciences. com.

    41. [41]

      [32] C.A. Lipinski, L. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (2001) 3-26.

    42. [42]

      [33] Molinspiration Chemoinformatics Brastislava, Slovak Republic, Available from: http://www.molinspiration.com/cgi-bin/properties 2014.

    43. [43]

      [34] Y.H. Zhao, M.H. Abraham, J. Le, et al., Rate-limited steps of human oral absorption and QSAR studies, Pharm. Res. 19 (2002) 1446-1457.

    44. [44]

      [35] Drug-likeness and molecular property prediction, available from: http://www.molsoft.com/mprop/.

    45. [45]

      [36] S.G. Alvarez, M.T. Alvarez, A practical procedure for the synthesis of alkyl azides at ambient temperature in dimethyl sulfoxide in high purity and yield, Synthesis 4 (1997) 413-414.

    46. [46]

      [37] W.L. Mendelson, S. Hayden, Preparation of 2,4-dihydroxybenzaldehyde by the Vilsmeier-Haack reaction, Synthetic Commun. 26 (1996) 603-610.

    47. [47]

      [38] K.K. Srinivasan, Y. Neelima, J. Alex, et al., Synthesis of novel furobenzopyrone derivatives and evaluation of their antimicrobial and antiinflammatory activity, Indian J. Pharm. Sci. 69 (2007) 326-331.

    48. [48]

      [39] P. Ertl, B. Rohde, P. Selzer, Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem. 43 (2000) 3714-3717.

  • 加载中
    1. [1]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    2. [2]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    3. [3]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    4. [4]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    5. [5]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    6. [6]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    7. [7]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    8. [8]

      Fangwen Peng Zhen Luo Yingjin Ma Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273

    9. [9]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    10. [10]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    11. [11]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    12. [12]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    13. [13]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    14. [14]

      Shuying LiWeiwei ZhuGeXuan SunChongzhen SunZhaojun LiuChenghe XiongMin XiaoGuofeng Gu . Convergent synthesis and immunological study of oligosaccharide derivatives related to galactomannan from Antrodia cinnamomea. Chinese Chemical Letters, 2024, 35(5): 109089-. doi: 10.1016/j.cclet.2023.109089

    15. [15]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    16. [16]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    17. [17]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    18. [18]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    19. [19]

      Lanyun ZhangWeisi WangYu-Qiang ZhaoRui HuangYuxun LuYing ChenLiping DuanYing Zhou . Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe. Chinese Chemical Letters, 2025, 36(1): 109798-. doi: 10.1016/j.cclet.2024.109798

    20. [20]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

Metrics
  • PDF Downloads(1)
  • Abstract views(1062)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return