Citation:
Zi-Jie Liu, Xiao-Yong Guo, Gang Liu. N-Oxide heterocycles and imidazoles replacing ring D of calanolides against Mycobacterium tuberculosis[J]. Chinese Chemical Letters,
;2016, 27(01): 51-54.
doi:
10.1016/j.cclet.2015.11.001
-
We have explored the chemistry of N-oxide heterocycles and imidazoles replacing ring D of the natural product(+)-calanolide A, and have synthesized 12 new analogues, two of which were active against both R Mtb and NR Mtb with MIC values of 12.5μg/mL, which would lead to further optimization for more potent anti-TB candidates.
-
-
-
[1]
[1] Z.Q. Xu, W.W. Barrow, W.J. Suling, et al., Anti-HIV natural product(+)-calanolide A is active against both drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis, Bioorg. Med. Chem. 12(2004) 1199-1207.
-
[2]
[2] P.R. Zheng, S. Somersan-Karakaya, S.C. Lu, et al., Synthetic calanolides with bactericidal activity against replicating and non-replicating Mycobacterium tuberculosis, J. Med. Chem. 57(2014) 3755-3772.
-
[3]
[3] R.M. Phillips, Prospects for bioreductive drug development, Expert Opin. Investig. Drugs 7(1998) 905-928.
-
[4]
[4] S.R. McKeown, R.L. Cowen, K.J. Williams, Bioreductive drugs:from concept to clinic, Clin. Oncol. 19(2007) 427-442.
-
[5]
[5] R.C. Goldman, Maximizing bactericidal activity with combinations of bioreduced drugs, Future Med. Chem. 2(2010) 1253-1271.
-
[6]
[6] E. Vicente, R. Villar, S. Perz-Silanes, et al., Quinoxaline 1,4-di-N-oxide and the potential for treating tuberculosis, Infect. Disord. Drug Targets 11(2011) 196-204.
-
[7]
[7] M.L. Richardson, K.A. Croughton, C.S. Matthews, M.F. Stevens, Structural studies on bioactive compounds. 39. Biological consequences of the structural modification of DHFR-inhibitory 2,4-diamino-6-(4-substituted benzylamino-3-nitrophenyl)-6-ethylpyrimidines('benzoprims'), J. Med. Chem. 47(2004) 4105-4108.
-
[8]
[8] G. Aguirre, L. Boiani, H. Cerecetto, et al., Benzo[1,2-c]1,2,5-oxadiazole N-oxide derivatives as potential antitrypanosomal drugs:Part 3. Substituents-clustering methodology in the search for new active compounds, Bioorg. Med. Chem. 13(2005) 6324-6335.
-
[9]
[9] K. Kumar, D. Awasthi, S.Y. Lee, et al., Novel trisubstituted benzimidazoles, targeting Mtb FtsZ, as a new class of antitubercular agents, J. Med. Chem. 54(2011) 374-381.
-
[10]
[10] Y.L. Gong, S. Somersan Karakaya, X.Y. Guo, et al., Benzimidazole-based compounds kill Mycobacterium tuberculosis, Eur. J. Med. Chem. 75(2014) 336-353.
-
[11]
[11] J.T. Zhang, E.W. Kirchhoff, D.E. Zembower, et al., Automated process research. An example of accelerated optimization of the Friedel-Crafts acylation reaction, a key step for the synthesis of anti-HIV+-calanolide A, Org. Proc. Res. Dev. 4(2000) 577-580.
-
[12]
[12] M.E. Fox, I.C. Lennon, G. Meek, A novel synthesis of 5-hydroxy-2,2-dimethyl-10-propyl-2H-pyrano[2,3-f]chromen-8-one, Tetrahedron Lett. 43(2002) 2899-2902.
-
[13]
[13] M. Lemaire, A. Guy, P. Boutin, J.P. Guette, Direct nitration of anilines using nitrocyclohexadienones, Synthesis 10(1989) 761-763.
-
[14]
[14] M. Lemaire, A. Guy, J. Roussel, J.P. Guette, Nitrocyclohexadienones:a new class of nitrating agents, Tetrahedron 43(1987) 835-844.
-
[15]
[15] S.S. Sabri, M.M. El-Abadelah, H.A. Yasin, Synthesis and spectral properties of some N-(2-benzimidazoyl)-α-aminoesters and their N-oxides, J. Heterocycl. Chem. 24(1987) 165-169.
-
[16]
[16] C. Nathan, Fresh approaches to anti-infective therapies, Sci. Transl. Med. 4(2012), 140sr2.
-
[1]
-
-
-
[1]
Linghui Zou , Meng Cheng , Kaili Hu , Jianfang Feng , Liangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129
-
[2]
Fengjie Liu , Fansu Meng , Zhenjiang Yang , Huan Wang , Yuehong Ren , Yu Cai , Xingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335
-
[3]
Yujie Li , Ya-Nan Wang , Yin-Gen Luo , Hongcai Yang , Jinrui Ren , Xiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576
-
[4]
Shaoqing Du , Xinyong Liu , Xueping Hu , Peng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378
-
[5]
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
-
[6]
Ningyue Xu , Jun Wang , Lei Liu , Changyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225
-
[7]
Yihan Zhou , Duo Gao , Yaying Wang , Li Liang , Qingyu Zhang , Wenwen Han , Jie Wang , Chunliu Zhu , Xinxin Zhang , Yong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967
-
[8]
Xin Zhang , Junyu Chen , Xiang Pei , Linxin Yang , Liang Wang , Luona Chen , Guangmei Yang , Xibo Pei , Qianbing Wan , Jian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889
-
[9]
Liping Zhao , Xixi Guo , Zhimeng Zhang , Xi Lu , Qingxuan Zeng , Tianyun Fan , Xintong Zhang , Fenbei Chen , Mengyi Xu , Min Yuan , Zhenjun Li , Jiandong Jiang , Jing Pang , Xuefu You , Yanxiang Wang , Danqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506
-
[10]
Zhilong Xie , Guohui Zhang , Ya Meng , Yefei Tong , Jian Deng , Honghui Li , Qingqing Ma , Shisong Han , Wenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584
-
[11]
Fukui Shen , Yuqing Zhang , Guoqing Luan , Kaixue Zhang , Zhenzhen Wang , Yunhao Luo , Yuanyuan Hou , Gang Bai . Revealing drug targets with multimodal bioorthogonal AMPD probes through visual metabolic labeling. Chinese Chemical Letters, 2024, 35(12): 109646-. doi: 10.1016/j.cclet.2024.109646
-
[12]
Cheng-Zhe Gao , Hao-Ran Jia , Tian-Yu Wang , Xiao-Yu Zhu , Xiaofeng Han , Fu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840
-
[13]
Jiajia Wang , XinXin Ge , Yajing Xiang , Xiaoliang Qi , Ying Li , Hangbin Xu , Erya Cai , Chaofan Zhang , Yulong Lan , Xiaojing Chen , Yizuo Shi , Zhangping Li , Jianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819
-
[14]
Xinyu Tian , Jiaxiang Guo , Zeyi Li , Shihou Sheng , Tianyu Zhang , Xianfei Li , Chuandong Dou . Control over electronic structures of organic diradicaloids via precise B/O-heterocycle fusion. Chinese Chemical Letters, 2025, 36(1): 110174-. doi: 10.1016/j.cclet.2024.110174
-
[15]
Yi Cao , Xiaojiao Ge , Yuanyuan Wei , Lulu He , Aiguo Wu , Juan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672
-
[16]
Tong Tong , Lezong Chen , Siying Wu , Zhong Cao , Yuanbin Song , Jun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689
-
[17]
Jiechen Liu , Xiaoguang Li , Ruiyang Xia , Yuqi Wang , Fenghe Zhang , Yongzhi Pang , Qing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619
-
[18]
Xinyi Hu , Riguang Zhang , Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157
-
[19]
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
-
[20]
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(663)
- HTML views(15)